Python Activity 42: Linked Lists - Elements

Name: Partner:

Python Activity 42: Linked Lists - Elements

Learning Objectives

Students will be able to:

Content:

e Define a linked list

e Identify the value and next of a linked list

e Explain the shortcomings of a solitary Element class
Process:

e Write code that adds elements to a list

e Write code that iterates through the list’s values.

Prior Knowledge

e Python concepts from Activities 1-19, Lists, Recursion
Folks, this is a brand new activity. If you encounter any issues/typos, please let Iris know!

Critical Thinking Questions:

FYI: We’ve encountered python lists before, but now we’re going to build our own Linked Lists which
are a series of Elements linked together, one pointing to the next.

1. The diagram below represents the underlying class structure for the 11 list on the left.
A Linked List

Element: . Element:) Element:

11 = [3, 7, 1715]

- "

a. What are the two __slots__ of the Element class?

b. What is stored in the _value variable of the first Element of this list?
c. What is stored in the _next variable of the first Element of this list?
d. What is stored in the _next variable of the last Element of this list?

e. What does the next variable represent?

The following code creates a linked Element version of our list:
Element (1715, None)

Element (7, yr)

Element (3, d)

What does the first parameter of a new Element instance represent?

o

What does the second parameter of a new Element instance represent?

c. Write a line of code to add ' founded' to the beginning of the 111 list.

d. How might we construct an empty Element list?

The following code creates another linked Element list:
| = Element(3)

112. next = Element(7)

112. next. next = Element(1715)

a. How does 112 differ from 1117
b. What would happen if we replaced Element (1715) with 112 in the code above?
c. Write a line of code that would add 'in Williamstown' as the last elementof 112.

Examine the following example code:

def mystery(self):
if self.next is None:
return 1
else:
return 1 + self.next.mystery()

b. What does the following line do?: if self.next is None:

a. For this recursive method, what is the base case / stopping condition?

d. For this recursive method, how is the longer journey broken down/shortened?

e. What is the small step we take in mystery for each recursive call?

f. For our example list, 111, what will this mystery method return?

g. What should the mystery method be renamed to?

FYI: getitem (self, i) isa special method in python that is called when accessing an
indexed item. 1 is the index of the sequence being accessed.

5. In examining this code, the method on the right is called when the code on the left is evaluated:
| >>> 11[1] def getitem (self, i): ‘
7 if i == 0:
return self.value
else:

return self.next[i-1]

b. For this recursive method, what is the base case / stopping condition?
e. For this recursive method, how is the longer journey broken down/shortened?
f. What is the small step we take in ___getitem for each recursive call?

Application Questions: Use the Python Interpreter to check your work

1. Writethe str (self) method for our Element class so that it prints the values of all the
elements in our list, not just our first Element’s value:
def str (self):

2. Write the append(self, v) method recursively for our Element class so that it adds the
object, v, to the end of our Element list. When considering the recursion, determine (1) what is
the stopping condition, (2) what is the small step we should take with each recursive call, and (3)
how do we break the journey down into a smaller journey:
def append(self, v):

3. Write a recursive method of Element that returns True if the given value, v, exists as a value
within the list, False if not contained in the Element list.
def _ contains__ (self, v):

