Python Activity 34: Super Methods

Name: Partner:

Python Activity 34: Super Methods

Learning Objectives

Students will be able to:

Content:

e Explain how calling parent-class methods explicitly can reduce redundant code.
Process:

e Write sub-classes that invoke parent-class methods explicitly.

Prior Knowledge
e Python concepts, including creating user-defined classes with attributes and [special] methods.

If you encounter any issues/typos, let Iris know! Questions? Ask Iris or the POGILing
forum

Critical Thinking Questions:

1. Examine the sample code below with its Terminal output in the dotted box.
purposerobot py

0 class Robot: 5 Output:
1 __slots__ = ['name’] ! save the world
2 def _ init_ (self, nm): ! AttributeError:
3 self.name = nm : 'PurposefulRobot' has no
: attribute 'name'’ :
4 class PurposefulRobot(Robot)..
5 __slots__ = ['purpose']
6 def init (self, prp):
7 self.purpose = prp

9 if name == ' main_':

10 prl = PurposefulRobot('save the world')
11 print(prl.purpose)

12 print(prl.name)

a. What type of object is pr1?
b. What slots does PurposefulRobot have?
c. Where does this slot appear on the left-hand side of an assignment operator?
d. What value is the slot assigned in the above code?
What does line 11 output?
f. What slots does PurposefulRobot inherit?

g. Where does this slot appear on the left-hand side of an assignment operator?

h. What value is the slot assigned in the above code?
1. What does line 12 output?
J- How does the difference in lines 11 & 12's output tell us which init (self)

method is being called?

k. When we instantiate a PurposefulRobot object which init (self) method
is called?
1. How would you modify PurposefulRobot so that it could be initialized with a

name attribute? What other line(s) would you have to modify? Does this solution
introduce repeated code?

PurposefulRobot:

Other lines:

Repetitive code?:

2. Examine the sample code below which replaces the previous example.

purposerobot.py
0 class Robot: § Output: :
1 __slots___ = ['name'] : save the world
2 def _ init_ (self, nm): I gpudnik
3 self.name = nm :

4 class PurposefulRobot (Robot):

5 __slots__ = ['purpose']

6 def init (self, name, prp):
7 self.purpose = prp

8 super (). init (name)

9 if name == ' main_':
10 pr2 = PurposefulRobot('Spudnik', 'save the world')
11 print(pr2.purpose)

12 print (pr2.name)

a. What type of object is pr2?

b. What slots does pr2 have?

c. Where are these slots assigned a value?

d. How does the output of line 12 in this example differ from the previous example?

e. How does line 10 in this example differ from line 10 in the previous example?

f. How does PurposefulRobot's initializer method header differ compared to the

previous example?

g. What line was added to PurposefulRobot's initializer method?
h. What might be the values being passed in this line for the above example?
1. What method is likely being called on line 8?

FYI: A parent-class’ methods can be called from within a child-class by using the super() function,
rather than an instance-name. This is useful for reducing redundant code.

] If we added the following method to Robot:
def introduce(self):
return 'I AM ' + self.name.upper ()
...How might we add an introduce (self) method to PurposefulRobot so that
it returns the robot's name introduction with its purpose in all uppercase lettering without

repetitive code?

