
Python	Activity	34:	Super	Methods 

	
Name:	_______________________________________	 	 Partner:	 ________________________________	

Python	Activity	34:	Super	Methods	
 

 
Critical Thinking Questions: 
 
1. Examine the sample code below with its Terminal output in the dotted box.  

purposerobot.py 
 

 

a. What type of object is pr1? _____________________________ 

b. What slots does PurposefulRobot have? ______________________________ 

c. Where does this slot appear on the left-hand side of an assignment operator? ______ 

d. What value is the slot assigned in the above code? ______________________________ 

e. What does line 11 output? ______________________________ 

f. What slots does PurposefulRobot inherit? ______________________________ 

 
Learning Objectives 
Students will be able to: 
Content: 
• Explain how calling parent-class methods explicitly can reduce redundant code. 
Process: 
• Write sub-classes that invoke parent-class methods explicitly.  
 
Prior Knowledge 
• Python concepts, including creating user-defined classes with attributes and [special] methods. 

 
If you encounter any issues/typos, let Iris know! Questions? Ask Iris or the POGILing 
forum 

0 class Robot: 
1 __slots__ = ['name'] 
2 def __init__(self, nm): 
3  self.name = nm 
 
4 class PurposefulRobot(Robot): 
5 __slots__ = ['purpose'] 
6 def __init__(self, prp): 
7  self.purpose = prp 
 
9  if __name__ == '__main__': 
10  pr1 = PurposefulRobot('save the world') 
11 print(pr1.purpose)  
12 print(pr1.name) 

Output: 
save the world 
AttributeError: 
'PurposefulRobot' has no 
attribute 'name' 



g. Where does this slot appear on the left-hand side of an assignment operator? ______ 

h. What value is the slot assigned in the above code? ______________________________ 

i. What does line 12 output? ______________________________ 

j. How does the difference in lines 11 & 12's output tell us which __init__(self) 

method is being called? ________________________________________________ 

___________________________________________________________________ 

k. When we instantiate a PurposefulRobot object which __init__(self) method 

is called? ______________________________ 

l. How would you modify PurposefulRobot  so that it could be initialized with a 

name attribute? What other line(s) would you have to modify? Does this solution 

introduce repeated code? 

PurposefulRobot:  ____________________________________________________ 

   ____________________________________________________ 

   ____________________________________________________ 

Other lines: _____________________________________________________________ 

Repetitive code?: _________________________________________________________ 

 

2. Examine the sample code below which replaces the previous example.  
purposerobot.py 

 

 

a. What type of object is pr2? _____________________________ 

b. What slots does pr2 have? ______________________________ 

c. Where are these slots assigned a value?  

______________________________________________________________________ 

0 class Robot: 
1 __slots__ = ['name'] 
2 def __init__(self, nm): 
3  self.name = nm 
 
4 class PurposefulRobot(Robot): 
5 __slots__ = ['purpose'] 
6 def __init__(self, name, prp): 
7  self.purpose = prp 
8  super().__init__(name) 
 
9  if __name__ == '__main__': 
10  pr2 = PurposefulRobot('Spudnik','save the world') 
11 print(pr2.purpose)  
12 print(pr2.name) 

Output: 
save the world 
Spudnik 



d. How does the output of line 12 in this example differ from the previous example?  

______________________________________________________________________ 

e. How does line 10 in this example differ from line 10 in the previous example?  

______________________________________________________________________ 

f. How does PurposefulRobot's initializer method header differ compared to the 

previous example?  

__________________________________________________________________ 
g. What line was added to PurposefulRobot's initializer method?  

__________________________________________________________________ 

h. What might be the values being passed in this line for the above example?  

__________________________________________________________________ 
i. What method is likely being called on line 8?  

__________________________________________________________________ 

j. If we added the following method to Robot: 

 def introduce(self): 

  return 'I AM ' + self.name.upper() 

…How might we add an introduce(self) method to PurposefulRobot so that 

it returns the robot's name introduction with its purpose in all uppercase lettering without 

repetitive code? __________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 
 

FYI:   A parent-class' methods can be called from within a child-class by using the super() function, 
rather than an instance-name. This is useful for reducing redundant code. 


