Python Activity 26: Properties
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Python Activity 26: Properties

Learning Objectives

Students will be able to:

Content:

e Define setters and getters

e Define property and setter decorators

e Explain the different ways to access instance attributes
Process:

e Write code that creates a property and calls that method.

e Write code that creates a setter-decorated method and calls it.
Prior Knowledge

e Python concepts from Activities 1-20. Classes. 28 (Arguments)

If you encounter any issues/typos, please let Iris know! Questions? Ask Iris or the POGILing forum

Critical Thinking Questions:

1. Examine the following code below, that defines a class to store the temperature in degree Celsius.
Celsius.py

0 class Celsius:

1 __slots__ = [' _temperature']

2 def fahrenheit(self):

3 return (self. temperature * 1.8 ) + 32

4 if name == '_main_':
5 humanC = Celsius()
6 humanC._ temperature = 37
a. What are the instance attribute(s) of a Celsius object?
b. On what line do we instantiate a new Celsius object?
c. On what line do we assign a value to humanC’s instance attributes?
d. Write a line of code to change humanC’s temperature to 0:
e. Write a line of code to print the instance attribute(s) of this Celsius object:

FYI: In python, we use an underscore at the start of an object name to indicate that we don’t want
external modules or programmers to access these objects. In this class, we call that underscore
guilt because you should feel like you’re doing something wrong when using classes, variables, or
functions that start with an underscore.




2.

Examine the sample code to store a temperature in degrees Fahrenheit.
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class Fahrenheit:

Fahrenheit.py

__slots = [' temperature']
def celsius(self):

return (self. temperature - 32 ) / 1.8
def temperature(self):

return self. temperature
def setTemperature(self, v):

self. temperature = v
__name__ == ' main__':
humanF = Fahrenheit()
humanF.setTemperature(98.6)

a.

What are the instance attribute(s) of a Fahrenheit object?

On what line do we assign a value to humanF’s instance attributes?

How does assigning values to instance attributes differ for this Fahrenheit class, as
compared to the Celsius class in the previous question?

Write a line of code to change humanF’s temperature to 32:

Write a line of code to print the instance attribute(s) of this Fahrenheit object:

How do you know a line of code is changing a value, versus referencing a value?

FYI: Accessor methods, such as temperature () in this example, allow access to objects that we
would normally protect with underscore guilt. Mutator methods, such as setTemperature (V)
in this example, provide a way to modify the value of an attribute without using the underscored
name. Accessors and mutators, implemented in this way, are not good python programming.




3. Examine the sample code below, it stores temperature in Kelvin.
Kelvin.py

0 class Kelvin:

1 __slots__ = ['_temperature']

2 def celsius(self):

3 return self. temperature — 273.15
4 @temperature.setter

5 def temperature(self,v):

6 self. temperature = v

7 if name == '_main_ ':
humanK = Kelvin()
humanK. temperature = 310.15
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a. What are the instance attribute(s) of a Kelvin object?

b. On what line do we assign a value to humanK’s instance attributes?

c. How does assigning values to instance attributes differ for this Kelvin class, as
compared to the Fahrenheit class in the previous question?

d. Write a line of code to change humanK’s temperature to 278.15:

e. How did we modify the temperature, in the first three questions for these classes:

Celsius.py:

Fahrenheit.py:

Kelvin.py:

FYI: We can implement setter methods in a more pythonic way, using the @ functionName.setter
decorator. The decorator is the line just prior to the function header that begins with an ‘@’. The
text between the ‘@’ and ‘. setter’ is the name of the function below, and allows us to modify
the values of instance attributes. The specified setter function is called when its name appears on
the lefthand side of an assignment statement.

f. Why might it be preferable to use the setter decorator instead of modifying instance
attributes directly?




4.

Examine the sample code below, it is the same as the previous Kelvin class, but with lines a-¢ added:
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class Kelvin:

if

Kelvin.py

__slots = [' temperature']
def celsius(self):

return self. temperature — 273.15
@property
def temperature(self):

return self. temperature
@temperature.setter
def temperature(self, v):

self. temperature = v

__name___ == ' main__':
humanK = Kelvin()

print (humanK.temperature)
humanK. temperature = 310.15
print (humanK.celsius())

On what line do we reference the values stored in humanK’s _temperature attribute?

What might line d output?

How does referencing values stored in instance attributes differ for this Kelvin class, as
compared to the Fahrenheit class?

How did we access the temperature, in this activity’s questions for these classes:

Celsius.py:

Fahrenheit.py:

Kelvin.py:

FYI: When we place the @property decorator before a function heading, the method is called when its
name is referenced for accessing a value (i.e., not on the lefthand side of an assignment).

What does line e output?

If we added the following line right before line 2, what other code would we have to
change: @property

Why might it be preferable to use the property decorator instead of referencing instance
attributes directly?




Examine the following code, a new example!

0 class Automobile:

1 __slots_ = [' _make', ' model']
2 @property

3 def brand(self):

4 return self. make

5 @brand.setter

6 def brand(self, m):

7 self. make = m

8 if name == '_main ':

9 dreamCar = Automobile()

10 dreamCar.brand = ‘Tesla’

11 print(dreamCar.brand)

a. What are the instance attribute(s) of an Automobile object?

s

On what line do we instantiate a new Automobile object?

c. What is stored in dreamCar ’ s instance attributes at the end?
d. What are we trying to do on line 10?

e. What method is called on line 10?

f. What are we trying to do on line 117

g. What method is called on line 117

h. Write a @ . setter method for the _model instance attribute:
1. How would you call this setter?

] Write a @property method for the model instance attribute:

k. How would you call this property?




Application Questions: Use Python to check your work

1. a. Write a class, Currency, that has the instance attribute _usd, representing the currency in
US Dollars. _usd should be implemented as a property:
class Currency():

1. b. Add a @.setter method to the previously defined class, Currency, that allows the user to
modify the value of usd:

1. c. Add a pair of property and @.setter methods to reference and modify the instance
attribute using any other recognized currency (you’ll need to apply a conversion rate):




2. Write a class, Course, that has the instance attribute _grade, which is a string and should also
be implemented as a property. It has a setter method that takes in a decimal number
representing the percentage grade in the course. Depending on that percentage, the @ . setter
method will assign an appropriate letter grade to the instance attribute:

class Course():

Review lab assignments and Homeworks for more applications of properties and setters.



