Python Activity 25b: Classes - Methods

Name: Partner:

Python Activity 25b: Classes - Methods

Learning Objectives

Students will be able to:

Content:

e Define methods and initializers in python

e Identify differences between methods/functions and attributes/variables
Process:

e Write code that creates a new user-defined class with methods and initializers
Prior Knowledge

e Python concepts from Activities 1-24.

Folks, this is a brand new activity. If you encounter any issues/typos, please let Iris know!

Critical Thinking Questions:

1. Examine the following code from interactive python below.

Interactive Python
0 >>> example = list()
1 >>> example.append(2)
2 >>> example.append(4)
3 >>> example
4 [2, 4]
a. What type of object is example? How do you know?
b. When we call . append () which object are we appending to? How do you know?
C. If we reassigned example tobe '24 " what would . append () do?

FYI: Functions that operate on certain kinds of objects are called methods (. append () is a method of
List). We have been using many methods since the beginning of the course.

d. What are some additional methods that we have been using in this course so far?

For lists:

For strings:




2. Examine the following code below, that creates a new class in interactive python:

AUl WN

0 >>> class EvensList:
1 .

mamwn

< A new class to store data """

>>> el = EvensList()
>>> el.items = [2,4]
>>> el.items

[2, 4]

>>> el.append(6)

What type of object is e1? How do you know?

What value does el . items hold after line 3?

What type of objectis el . items? How do you know?

What attributes does EvensList have?

What does the programmer hope will happen after line 6?

This code will generate the following error, “AttributeError: ‘EvensList’
object has no attribute ‘append’,” why do you think that is?

Observe what happens when we enter the following lines, continuing from those above:

8
9

10
11
12

>>> def append(evenlst, item):
oo evenlst.items.append(item)

>>> append(el, 6)
el.items
[2, 4, 6]

a.

b.

How does line 10 in this example differ from line 1 in question 1?

Is append (. .) defined on lines 8 & 9 a method or a function? Why?

| FYI: User-defined object instances can be passed to functions just like built-in object instances.

C.

How does the value of el . i tems change in line 10?

| FYI: User-defined object instances are mutable.




d. Write some lines of python to adjust the append function so that it only adds items to
evenlst that are even numbers:

def append(evenlst, item):

4. Examine the following code below, that creates a new class in interactive python:

0 >>> class EvensList:
1 ... def append(self, item):
2 ... self.items.append(item)

>>> el = EvensList()
>>> el.items = [6,4]
>>> el.append(3)

>>> el.items

[6, 4, 3]

0 J o U

a. What value does el . items hold after line 6?

b. How does the call to append differ in line 6 in this example, versus line 10 in question 3?

c. How does append’ s function header differ in line 1 above versus line 8 in question 3?

d. How does append’ s function definition differ in line 2 above versus line 9 in question 3?

| FYI: In user-defined types, we refer to the values stored in that instance through the keyword, self.

e. If we were to add a line 3 to the append method that was print (self.items) what

might be printed and on after what line?

f . Modify the append method for EvensList to only append integers that are even numbers:




5. Examine the following code below, that creates a different version of EvensList, but as a script:
EvenslList.py

0 class EvensList:

1 def init (self, itemList):
2 self. items = itemList

3 def append(self, item):

4 self. items.append(item)

5 if name == '_main ':

6 betterEL = EvensList([88, 12, 4])
7 print(betterEL. items)

8 # prints [88, 12, 4]

9 betterEL.append(8)

10 print(betterEL. items)

a. What two lines did we add to this definition of EvensList that we did not see in the

previous question?

b. How does our creation of the betterEL variable on line 6 differ in this example from
creating el in the previous example?

FYI: The __init__ method is implicitly called when you instantiate a new object. It is very useful for
setting up an object with an initial state or initial values.
C. What’s stored in betterEL. items when line 7 is printed?

d. What’s stored in betterEL. items after line 9 is executed?

Application Questions: Use Python to check your work

la. Create a class, Book, which has a string as slot. Write a method printText that will print

to the screen the text that the book contains.
class Book():
__slots___ = ['theText']

def printText(self):

1b. Write a method for Book, readSome, that prints to the screen the first eighty characters from

the text.
def readSome(self):



lc. Add an attribute to Book that keeps track of the index of the last character read by
readSome () . Update readSome () to change that value when it reads from the text, and to
only begin reading from where it last left off:

1d. Write an initializer for the Book class that takes an initial text and stores it as an attribute/slot:
def init (self, txt):

le. Write a main function for the Book class that creates a new book with text and uses the methods
you wrote in the previous questions :
if name == '_main__ ':




