Python Activity 21: Generators

Name: Partner:

Python Activity 21: Generators

Learning Objectives

Students will be able to:

Content:

e Define a generator

e Explain the difference between the yield and return keywords
Process:

e Write code that creates a generator.

e Write code that uses a generator via next(..) and a for..loop.
Prior Knowledge

e Python concepts from Activities 1-20.

Folks, this is a brand new activity. If you encounter any issues/typos, please let Iris know!

Critical Thinking Questions:

1. Examine the sample code from interactive python, below.

Sample Code

0 >>> def countEvens(n):
1 ... i=0

2 ... while i <= n:
3 ... print (i)
4 ... i+= 2

5 >>> countEvens(3)

a. When does the while loop on line 2 stop?

b. If the parameter n was 3, how many times through the loop would we go?

c. What is the output from calling countEvens, on line 5?

| FYI: A generator is an object that constructs a (possibly infinite) stream of values on demand.

2. Examine the sample code from interactive python, below.

o

>>> def countEvens(n):
.o i=0

cen while i <= n:
oo yield i
.o i+= 2

g = countEvens(3)
>>> next(g)

WooNoaU b WNRE
\
\
Vv

0

>>> next(g)

2
a. How does the function countEvens (n) differ from the previous countEvens (n)?
b. Write a line of code to print the next value yielded by g.
c. If we replace line 5 with g = countEvens (10), what will the first five calls of

next (g) generate?

d. Write a new function, reverseGen (. .), that takes a list and yields values from the
list from the end to the beginning:
def reverseGen(mylist):

FYI: Yield is a keyword like return, but instead of returning a value, it surrenders a generator object. The
special method next(..) is required to retrieve the value that was yielded.

3. The following code occurs in interactive Python:

>>> def countEvens(n):

.o i=20

.. while i <= n:
yield i

.o i += 2

>>> for num in countEvens(3):
“en print (num)

AUl W PO

a. The output from this sample code is the same as the output from Question 1. What might the
for.. loop be doing in order to make this possible?

b. What will this code output?

c. Write a couple lines of code to use your reverseGen(..) generator from the previous
question, using a for..loop:

| FYI: A more efficient mechanism for using generators is by using a for loop. |

4. Examine the following Python code:
| 0 def count(start = 0, step = 1): |
1 i = start
2 while True:
3 yield i
4 i += step
a. How do the parameters of this count (. .) function differ from those of

countEvens(..)?

b. If we wanted to replicate the behavior of countEvens (. .) with the count (..)
function, what would our start and step values be?
start: step:
c. When does the while loop on line 2 end?
d. Write a few lines of code to output the first four multiples of the number three using
count (..):
5. Examine the following code from interactive python: ‘ 5 >>> g=letters(’good’, 3) ‘
| 0 >>> def letters(word, n): | 6 >>> next(g)
1 ... i=0 7 ‘g’
2 while i < n: 8 >>> next (g)
3 yield word[i] 9 o
4 i+=1 10 >>> next(g)
11 ‘o’
a. What does the letters (word, n) functiondo? | 12 >>> next(g)
13 Traceback ():
Line 1 in <module>
Stop Iteration

. What are the values of the arguments passed to letters (..) on line 5?
c. What does the calls to next (g) doonlines 7,9, and 11?

d. Why might an error have been thrown by the next (g) call on line 12?
e. What would happen if we replaced line 5 with g=letters (‘good’,4)?
f. What might happen if we replaced line 5 with g=letters (‘bye’,4)?
6. Examine the following Python code:
|def mystery(a = 0, b = 1):
yield a
yield b

while True:
a, b = b, atb

yield b
a. Use the following table to step-through what this function is doing:
a b Yield Statement Yielded
0 1 yield a 0
0 1 yield b 1
1 1 yield b (2) 1
1 2 yield b (2)
b. If we were to rename this function to something more meaningful, what would we name
it to?

Application Questions: Use the Python Interpreter to check your work

1. Write a function that uses the yield statement to infinitely generate all the odd numbers:
def oddNum():

