Welcome to CS 134!

Introduction to Computer Science ()
Shikha Singh & Iris Howley
(0 0)

/
-Midterm Review Session- @@ \
/

\
A

Spring 2020

1:30pm today/Wednesday

“Midterm postponed and
* As classes have been canceled next week... logistics on going remote”

* Midterm exam has been postponed until after spriﬁé break N
* TA Student Help Hours are canceled Wednesday & Thursday
* Iris has Student Help hours Thursday 10a-12p

Shikha’s Student Help Hours are canceled unless otherwise noted

/ Please fill out the
-~ The CS department has a page of
S—

Please bring your personal laptop to class on Friday
so we can try to get you set-up.
You might be able to from the library.

https://forms.gle/MBhoE81qmiq1Yyf26
https://forms.gle/c5J2pWjbGMrWA2zt9
https://www.cs.williams.edu/system/

Midterm Exam is Thursday, March 12

Homeworks

Homework will typically be distributed in class on Wednesdays and often due in class on Mondays. Please check the details at

o I I)l ! 3 th homework han firm due date!
O e top of the homewo! dout to con ue date!
Due Date (place) Topic

® 5 :4 5 p m - 7 :4 5 p m O R 8— 1 O p m February 10 (in-class) | Homework 0. Data and algorithms.
February 17 (in-class) | Homework 1. Expressions and Functions.
February 24 (in-class) | Homework 2. Booleans and Loops.

March 2 (in-class) Homework 3. Strings and Mutability

* Closed book exam Mareh -l

* Review your homeworks! Slides! Labs!
* POGILs/Jupyter Notebooks!

* HW4 Solutions posted

MIDTERM EXAM IS THURSDAY., MARCH 12

Tentative Schedule of Topics

Week of

LAB

Wednesday

Ma.r 16
M. 22&29
Apr. 6
Apr. 13
Apr. 20
Apr. 27
May 4
May 11

4. Conditions (TP5-6)

7. Strings (TP8—9)

16 Special Methods
Spring Break

19. Images

22. Recursion

25. Linked List II.

* Slack

30. Iterative Sorting
33. Special Topics

I. PYTHON AND GITLAB
II. PROCEDURE

II1. TooLBOX BUILDING
IV. FAcuLTYy TRIVIA

V.. PRESENTING DATA
V1. GENERATORS
Spring Break

VII. IMAGES

VII. MuLTIPLE CLASSES
VIII. RECURSION

IX. RECURSIVE TREES
X. PROJECT

X. PROJECT (CONT.)

3. Functions (TP3
5. Iteration (TP7)

8. Mutability, Tuples (TP12)

11.

Plottm Data

17 Operators
Spring Break

20.
23.
26.
28.
31.
34.

Slack

Graphical Recursion
Binary Trees

Object Persistence
Recursive Sorting
Special Topics

1. Hello, world! (TP1)
Winter Carnival
6. Llsts (TP10)

15
18.
Spring Break

21.
24.
27.
29.
32.
35.

n-grams

Slack

Multiple Classes
Linked List 1
Tree Maps
Scope

Search
Evaluations

* Expressions. Booleans. If statements/conditionals. Simplification. Int()

* Strings. Split(), iterating over, slicing, concatenation, isupper(),
lower(), string methods, str()

* Functions. Writing your own, Value returning & None-returning,
Helper functions

* Lists. Slicing, indexing, iterating over, nested lists, sort() and sorted(),

list comprehensions, len() Debugoi Lambd
* Debugging * Lambada

* Set() * Doctests
* File Reading + _ all

* Dictionaries. .get() method, keys, values
* Loops. Nested, for, while, in

Topics

* Homework 1: Expressions & Functions, return & print

* Homework 2: booleans & loops over sequences, simplifying
conditionals, list indexing

* Homework 3: strings & mutability

* Homework 4: Tuples, Dict (get), list comprehension, lambda sorting

* From labs:

Writing functions, File reading; Strip, split; Sorting, strings; Len; Finding max;
Counters in loops; Doctests, _all _, modules/scripts, if

{ 4

__hame__=="_ main__

* Pretty much everything up to and including Lab 4 & Homework 4

?UESHNS‘? P
‘) -

> 7

What does this do?

>>> for 1 1n range(10):
for j in range(10-1):
print(" ", end='")
for j in range(2xi-1):
print("x", end="'")
print('"')

What does this do?

>>> for 1 1in range(10):

for j in range(10-1i): X

print(" ", end='") kK
for j in range(2%i-1): sk >k ok %k K

print ("x", end="") sxkskskskskxk
print('") sk sk sk ok ok sk ok ok oK

o 2 K R OK K OK KK
. P
How can we simplify it: sk ok kKKK
o 2 3 R K K R OK K OK KK

See POGIL 10. Nested Loops Sk ok ok ok ok ok ok ok ok ko ok ok ok kK

L | e ——— I

https://williams-cs.github.io/cs134-s20-www/iris-lectures/pogil-py-act-09-10-combined-forLoop-nestedLoop.pdf

S O O O 0O QO o

print (c)

"helLLo GooDbYe'

>>> for Cc 1n s:
1f c.1lslower () :

st.islower()

>>> 3

List Comprehensions

*def sized(num, wdList):

\\777/

77" Returns a list of words from wdList length num
return [wd for wd 1in wdList 1f len(wd) == num]

>>> sized (6, ['123456', 'hey', 'ho', 'letsgo’])
['123456', 'letsgo’]

* def appendArghEachWord (wdList) :
return [wd + ‘argh’ for wd i1n wdList]

>>> agppendArghEachWord(['yo', 'ho','a"', 'pirates', 'life'])
['yvoargh', 'hoargh', 'aargh', 'piratesargh', 'lifeargh']

Lambda sorted’s key parameter lets us

specify how to sort a sequence.
°>>> 1st = | [119]/ [2/8]1 [3/7]]

° >>> def bySecond (pr) :

BERE return pr{l] Lambda functions are
. # Sorts by the 1th item: anonymous, single use functions

* >>> sorted(lst, key=bySecond)) o
- 113, 71, [2, 8], [1, 9]1 A good choice for specifying how

to sort items in a sequence
*# Also sorts by the 1lth item:
* >>> sorted(lst, key=lambda pr: prll])
*[[3, 71, (2, 81, [1, 9]]

~ Dictionary .get()
>>> d = dict ()
>>> type (d)

>

| >>> d.get ('day')
>

<class 'dict'>

>

>

>

9
>>> d.get (‘NOPE")

>> d['month'] = 'march'
>> d['day'] = 9 >>> d.get (‘NOPE', 'ERROR')
>> d '"ERROR'

f{'month': 'march', 'day': 9} >>> d

>>> d.get ('month") é;month': 'march', 'day':

|
|
|
|
|
:
!
"march'
|
i
|
|
|
|
|
|

Using .get() to store counts

>>> d
.>>> d = {'apple’: 1} {'apple': 2, 'grape': 2}
>>> d['grape’] = 2} >>> d['tomato'] =
52 >>> d
S>> g {'apple': 2, 'grape': 2,

'{'apple': 1’ vgrape|: 2} "tomato': 1}

>>> d.get ('apple', 0)+1 d.get('tomato', 0)+1 E
>>> d['apple'] = d.get ('apple', 0)+1

Tuples as Dictionary Keys

0. 0O O Q.

d

= dict ()
'apple']
 'grape']

(0,1)]

(0,1)]

' whatev '

I

1
2

whatev

>>> d[0]

Traceback
last) :

y >>> d[0]
>>> d

{'apple':

1): " whatev
(0, 1)

>>> (0 ==

FFalse

KeykError:

(most recent call

0

'hello!'

"'grape':
'hello!'}

None & Value Returning Functions

>>> g = lst.append(6) >>> 1st = [0,2,3,4]
>>> 1st >>> 1st.append(6)
(0, 2, 3, 4, o6, 0] >>> 1st

>>> a3 (0, 2, 3, 4, 0]

>>> print (a) >>> type (lst)

None <class 'list'>

{

If _name_="_main_

'def test():
i print("In test: __name__", __name__)

VS main() - script

def test():
print("In test: __name__", __name__)

‘def main(): | def main():
print("In main(): __name__", __name__) print("In main(): __name__", __name__)

print("IN __MAIN__: _ name__", name__)

|

|

! .
'if _name__ == '_ main__"': main()
i

|

|

|

|

§—> python3 test.py

EIN ~ MAIN name malin

i -> python3 test.py

é In main(): name malin
. When run as script, _name__==‘_ main__’

{

If name =’ main

4

vs main() - import

def test():

print("In test: __name__", __name__)
def main():

print("In main(): __name__", __name__)

def test():

print("In test: __name__", __name__)
def main():

print("In main(): __name__", __name__)

if _name__ == '__main__"': main()
print("IN __MAIN__: _ name__", __name__)

-> python3 -> python3

>>> 1mport test >>> 1mport test

>>> test.main () In main(): name test
In main () : name test

On right: main() is called even when you import

When __all__is

def test():
print("In test: __name__", __name__) empty, you have to:

def main(): from test import test
print("In main(): __name__", _ name__) B

. . SEPARATELY!!

if _name__ == '__main__"':

print("IN __MAIN__: _ name__", name__)

>>> from test import *
>>> test ()
Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
NameError: name 'test' 1s not defined

all

all = ['test']

def test():

print("In test: __name__", __name__)
def main():

print("In main(): __name__", __name__)
if __name__ == '__main__"':

print("IN __MAIN_ : _ name__", __name__)

>>> from test import *
>>> test ()

In test: name test

Put public functions in
__all_and you can
use them without
separate import
statements

Question About Aliasing

* Looked at Iris’ slides on mutability from February 26

* https://williams-cs.qgithub.io/cs134-s20-www/iris-
lectures/Lecture08-tuples.pdf

https://williams-cs.github.io/cs134-s20-www/iris-lectures/Lecture08-tuples.pdf

HW3 Question 2d

without aliasing # with aliasing

>>> nl = [[1,2],13,4]] >>> nl = [[1,2],1[3,4]]
>>> nl.append ([3,4]) >>> nl.append(nl[1])
>>> nl[2][1]=6 >>> nl[2][1]=6

>>> nl >>> nl

Playing w Sets

>>>] =
>>> set
{2, 3, 4, 5, 6}

>>> set (list (range(5)))

2,3,4,5,5,5,5,5,5,6,2]
(:
4 :
< e
{OI 1/ 2/ 3/ 4} :
t :
2, :

[
1)

w

>>> list (range (5))
(0, 1, 3, 4]

>>> t = (5,5,5,3,2,2)
>>> set (t)

{2, 3, 5}

>>> set ('aaaabbc')
{'b', 'a', 'c'"}

Sets & Mutability

>>> a = {1,2,3}

>>> b = a
>>> b == a
True

>>> b 1s a
True

>>> a.add (4)
>>> a

{1, 2, 3, 4}
>>> b

{1, 2, 3, 4}

>>> 1 = [1,2,3]
>>> m = [1,2,3]
>>> 1 .append
>>>] == m
False

>>> 1 1s m
False

>>> m

(1, 2, 3]

>>> 1

[1/ 2/ 3/ 4]

Reading Files

Opens the file Filename as a string Opens filename calls it fin
*with open(‘prideprejudi.txt’) as fin:
e for line 1in fin: Foreachlineinourfile, fin o
* pass Doesnothing, why’s it here? What should be here?

Once we leave the “with” indentation, the file is closed!

file is implicitly closed

FILES MUST BE OPENED. READ, AND THEN CLOSED

Writl Ng Fil es Specifies mode. w means?
What if we had ‘r’ here?

Opens the file Filename as a string Opens filename calls it fout
*with open(‘newFile.txt’, ‘w’) as fout:

e fout.write(“Hello! !'") writes to the file, "Hello!l”
efor item in mylist|:
. . Writes an entire list to a file
e fout.write(item)

Once we leave the “with” indentation, the file is closed!

file is implicitly closed

If unable to use the ‘with’ keyword, can also use fout.close () to explicitly close file

FILES MUST BE OPENED, WRITTEN, AND THEN CLOSED

Lab 05: Matplotlib

* Matplotlib functions will not be on the exam

* But knowing how fo manipulate dictionaries, sort lists, move
data around, write your own doctests, read from a CSV are
very importfant

Leftover Slides

