
Spring 2020

Welcome to CS 134!
Introduction to Computer Science

Shikha Singh & Iris Howley

-Midterm Review Session-

announcements

• As classes have been canceled next week…

• Midterm exam has been postponed until after spring break
• TA Student Help Hours are canceled Wednesday & Thursday
• Iris has Student Help hours Thursday 10a-12p

o Shikha’s Student Help Hours are canceled unless otherwise noted

Please read email from Shikha at
1:30pm today/Wednesday
“Midterm postponed and
logistics on going remote"

Please fill out the CS134 Remote Questionnaire (click here)

You might be able to borrow a laptop longterm from the library.

The CS department has a page of Resources for Remote Work.
Please bring your personal laptop to class on Friday

so we can try to get you set-up.

https://forms.gle/MBhoE81qmiq1Yyf26
https://forms.gle/c5J2pWjbGMrWA2zt9
https://www.cs.williams.edu/system/

Midterm Exam is Thursday, March 12

• TPL 203
• 5:45pm-7:45pm OR 8-10pm

• Closed book exam
• Review your homeworks! Slides! Labs!
• POGILs/Jupyter Notebooks!

• HW4 Solutions posted

MIDTERM EXAM IS THURSDAY, MARCH 12
Topic Coverage

TOPICS

• Expressions. Booleans. If statements/conditionals. Simplification. Int()
• Strings. Split(), iterating over, slicing, concatenation, isupper(),

lower(), string methods, str()
• Functions. Writing your own, Value returning & None-returning,

Helper functions
• Lists. Slicing, indexing, iterating over, nested lists, sort() and sorted(),

list comprehensions, len()
• Dictionaries. .get() method, keys, values
• Loops. Nested, for, while, in

• Debugging
• Set()
• File Reading

• Lambda
• Doctests
• __all__

Topics
• Homework 1: Expressions & Functions, return & print
• Homework 2: booleans & loops over sequences, simplifying

conditionals, list indexing
• Homework 3: strings & mutability
• Homework 4: Tuples, Dict (get), list comprehension, lambda sorting
• From labs:

§ Writing functions, File reading; Strip, split; Sorting, strings; Len; Finding max;
Counters in loops; Doctests, __all__, modules/scripts, if
__name__==‘__main__’

• Pretty much everything up to and including Lab 4 & Homework 4

Topic Coverage

questions?
? ?

?? ?
?

??

??

What does this do?

What does this do?

See POGIL 10. Nested Loops

How can we simplify it?

https://williams-cs.github.io/cs134-s20-www/iris-lectures/pogil-py-act-09-10-combined-forLoop-nestedLoop.pdf

st.islower()

>>> s = 'heLLo GooDbYe'
>>> for c in s:

... if c.islower():

... print(c)

...

h
e

o

o
o

b

e

List Comprehensions

• def sized(num, wdList):
§ ””” Returns a list of words from wdList length num “””
§ return [wd for wd in wdList if len(wd) == num]

>>> sized(6, ['123456', 'hey', 'ho', 'letsgo’])

['123456', 'letsgo’]

• def appendArghEachWord(wdList):
§ return [wd + ‘argh’ for wd in wdList]

>>> appendArghEachWord(['yo','ho','a','pirates','life'])

['yoargh', 'hoargh', 'aargh', 'piratesargh', 'lifeargh']

Lambda

• >>> lst = [[1,9], [2,8], [3,7]]
• >>> def bySecond(pr):
• ... return pr[1]

• # Sorts by the 1th item:
• >>> sorted(lst, key=bySecond)
• [[3, 7], [2, 8], [1, 9]]

• # Also sorts by the 1th item:
• >>> sorted(lst, key=lambda pr: pr[1])
• [[3, 7], [2, 8], [1, 9]]

Lambda functions are
anonymous, single use functions

A good choice for specifying how
to sort items in a sequence

sorted’s key parameter lets us
specify how to sort a sequence.

Dictionary .get()
>>> d.get('day')

9

>>> d.get(‘NOPE')
>>> d.get(‘NOPE', 'ERROR')

'ERROR'

>>> d

{'month': 'march', 'day':
9}

>>> d = dict()

>>> type(d)

<class 'dict'>

>>> d['month'] = 'march'

>>> d['day'] = 9

>>> d

{'month': 'march', 'day': 9}

>>> d.get('month')

'march'

.get() provides a default value to return when that key
doesn’t exist in the dictionary

Using .get() to store counts
>>> d

{'apple': 2, 'grape': 2}

>>> d['tomato'] =
d.get('tomato', 0)+1

>>> d
{'apple': 2, 'grape': 2,
'tomato': 1}

>>> d = {'apple’: 1}

>>> d['grape’] = 2}

>>> d.get('apple', 0)+1
2

>>> d

{'apple': 1, 'grape': 2}

>>> d['apple'] = d.get('apple', 0)+1

.get() is very useful when you want to update the value of a
key that may not exist (when updating lotsa keys)

Tuples as Dictionary Keys
>>> d[0]

Traceback (most recent call
last): KeyError: 0

>>> d[0] = 'hello!'

>>> d
{'apple': 1, 'grape': 2, (0,
1): ' whatev ', 0: 'hello!'}

>>> 0 == (0,1)

False

>>> d = dict()

>>> d['apple'] = 1

>>> d['grape'] = 2

>>> d[(0,1)] = ' whatev'

>>> d[(0,1)]
' whatev '

The dict key is the entire
tuple! One element of tuple is a different key!

None & Value Returning Functions
>>> lst = [0,2,3,4]

>>> lst.append(6)

>>> lst

[0, 2, 3, 4, 6]
>>> type(lst)

<class 'list'>

>>> a = lst.append(6)

>>> lst

[0, 2, 3, 4, 6, 6]

>>> a

>>> print(a)
None

Storing what’s returned by
append make the list ‘a’ None

Appending to lst does not
make the lst None!

If _name_=‘_main_’ vs main() - script

-> python3 test.py
IN __MAIN__: __name__ __main__

-> python3 test.py

In main(): __name__ __main__

When run as script, __name__ == ‘__main__’

If _name_=‘_main_’ vs main() - import

-> python3
>>> import test

>>> test.main()

In main(): __name__ test

-> python3
>>> import test

In main(): __name__ test

On right: main() is called even when you import

__all__

>>> from test import *
>>> test()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'test' is not defined

When __all__ is
empty, you have to:
from test import test

S E P A R A T E L Y ! !

__all__

>>> from test import *
>>> test()

In test: __name__ test

Put public functions in
__all__ and you can
use them without
separate import
statements

Question About Aliasing

• Looked at Iris’ slides on mutability from February 26

• https://williams-cs.github.io/cs134-s20-www/iris-
lectures/Lecture08-tuples.pdf

https://williams-cs.github.io/cs134-s20-www/iris-lectures/Lecture08-tuples.pdf

HW3 Question 2d

without aliasing
>>> nl = [[1,2],[3,4]]

>>> nl.append([3,4])

>>> nl[2][1]=6
>>> nl

[[1, 2], [3, 4], [3, 6]]

with aliasing
>>> nl = [[1,2],[3,4]]

>>> nl.append(nl[1])

>>> nl[2][1]=6
>>> nl

[[1, 2], [3, 6], [3, 6]]

Note the final values! Why is the 2nd one different?
Aliasing points them to same balloon!

Playing w Sets

>>> l = [2,3,4,5,5,5,5,5,5,6,2]
>>> set(l)
{2, 3, 4, 5, 6}
>>> set(list(range(5)))
{0, 1, 2, 3, 4}
>>> list(range(5))
[0, 1, 2, 3, 4]
>>> t = (5,5,5,3,2,2)
>>> set(t)
{2, 3, 5}
>>> set('aaaabbc')
{'b', 'a', 'c'}

Getting the unique values
from sequences

Sets & Mutability

>>> a = {1,2,3}
>>> b = a
>>> b == a
True
>>> b is a
True
>>> a.add(4)
>>> a
{1, 2, 3, 4}
>>> b
{1, 2, 3, 4}

>>> l = [1,2,3]
>>> m = [1,2,3]
>>> l.append(4)
>>> l == m
False
>>> l is m
False
>>> m
[1, 2, 3]
>>> l
[1, 2, 3, 4]

Reading Files

• with open(‘prideprejudi.txt’) as fin:
• for line in fin:
• pass

• # file is implicitly closed

Opens the file Filename as a string Opens filename calls it fin

For each line in our file, fin

Does nothing, why’s it here? What should be here?

Once we leave the “with” indentation, the file is closed!

FILES MUST BE OPENED, READ, AND THEN CLOSED

Writing Files

• with open(‘newFile.txt’, ‘w’) as fout:
• fout.write(“Hello!!”)
• for item in mylist:
• fout.write(item)

• # file is implicitly closed

Opens the file Filename as a string Opens filename calls it fout

Writes to the file, ”Hello!!”

Writes an entire list to a file

Once we leave the “with” indentation, the file is closed!

Specifies mode. w means?
What if we had ‘r’ here?

FILES MUST BE OPENED, WRITTEN, AND THEN CLOSED

If unable to use the ‘with’ keyword, can also use fout.close() to explicitly close file

Lab 05: Matplotlib

• Matplotlib functions will not be on the exam

• But knowing how to manipulate dictionaries, sort lists, move
data around, write your own doctests, read from a CSV are
very important

Leftover Slides

