
Hashing

Introduction to Computer Science
Iris Howley

TODAY’S LESSON
Hashing

(Arranging dictionary keys to find values quickly)

Dictionary Keys

>>> d = dict()
>>> d[['a',1]] = 'testing'
TypeError: unhashable type: 'list'
>>> d[('a',1)] = 'testing'

What’s the difference?

Dictionary Keys

Why?

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset

Mutable Types as Dictionary Keys (No!)

• Lists are mutable

• When you append() to a list, it changes that list object

• If you used a list object as a key in a dictionary, you wouldn’t be able
to find it again, after it’s been changed

We’re going to see why!

Mutable Types as Dictionary Keys (No!)

If you used a list object as a key in a dictionary, you wouldn’t be able to
find it again, after it’s been changed
mylist = ['a', 'b']
mydict = dict()
mydict[mylist] = 'throws an error'
mylist.append('c')
print(mydict[mylist])
Now mylist is no longer findable in the dict!

We’re going to see why!

Dictionary Keys

• Dictionaries index their items by a hash
• A hash is a fixed sized integer that identifies a particular value.
• Each value needs to have its own hash

§ For the same value you will get the same hash even if it's not the same object.

Why not just index items based on their value?

Hashing

Hashing FIND:

Hashing

Hashing FIND:

Hashing FIND:

Hashing

• We could organize all words in memory by the letter they start with…

• But words that start with ‘A’ could be numerous
• Compared to words that start with ‘Z’

§ …Sort of like arranging clothes by color

• Hashing is a different way of mapping items to make them easier to
find

Why not just index items based on their value?

Hashing

• Other concerns
§ Bad hashing function for your data, resulting in clustering
§ Running out of space in the pile you’ve assigned
§ Placing shirts in the wrong pile

• Goal: store in the order that makes it easiest to look them up

questions?? ?
?? ?

?

??

?
Please contact me!

Hash Function

Introduction to Computer Science
Iris Howley

Prior to this lecture…

Complete:
1. POGIL: Hashing
• Glow > Modules

TODAY’S LESSON
Hashing - How

(How we arrange dictionary keys to find values quickly)

Python Hash Function

hash(obj)
• It calls special method: obj.__hash__(self)
• Used for dictionary keys and sets
• Calculates an int for obj that ideally results in:
• Minimal clustering (i.e., even distribution)
• Same values generate the same hash value

hash(obj)

• >>> s = 'hello world'
• >>> s2 = 'hello world'
• >>> hash(s) à 4963799451833479185
• >>> hash(s2) à 4963799451833479185
• >>> s is s2 à False

If the 2 strings are the same, they’ll get the same hash
…even if they're different objects!

hash(obj)

• >>> s = 'hello world'
• >>> hash(s) à 4963799451833479185
• >>> exit()
• -> python3
• >>> s = 'hello world'
• >>> hash(s) à 4686556288558268365

You cannot assume that the same values will get the same hash
values across different sessions of python!

hash(obj)

• s = 'hello world'
• t = s + '!'
• hash(s) à 4963799451833479185
• hash(t) à -8774050965770600213
• hash(t[:-1]) à 4960501519247167238

If the 2 strings are different, they *might* get a different hash.
(an even distribution of objects may result in some overlap)

hash(obj)

• hash(1) à 1
• hash(2) à 2
• hash(1000000000000000000) à 1000000000000000000
• hash(10000000000000000000) à 776627963145224196

Some hash codes are expensive (million-long tuple)

At some length, it starts treating the numbers like a string
If the hash codes are the same, the values might be the same

Hash Tables

• Python's dictionary is an implementation of a more widely know data
structure called a Hash Table

• Let's walk through an example with this dictionary :
d = {'tally':'bananas', 'linus':'everything',
'pixel':'cheese', 'wally':'carrots'}

• (dog names mapped to their favorite foods)

Hash Tables

Keys

'pixel'

'tally'

'wally'

'linus'

Hashes

0

1

2

3

4

Buckets

tally

linus

bananas

everything

pixel cheese
wally carrotsx

How to access mydict[‘wally’]?

Overflow

collision!

What to do
with Wally?

Could re-hash into
new table and

increase #
buckets…

…or…

Immutable Objects

• Have no way to set/change the attributes, without creating a new
object
§ Like int, string, etc.
§ User-defined types: __slots__ = []

• Can be used as keys for dictionaries
§ If the class has __hash__() and __eq__() methods defined!

https://docs.python.org/3/reference/datamodel.html#object.__hash__

Immutable Objects

• Have no way to set/change the attributes, without creating a new
object
§ Like int, string, etc.
§ __slots__ = []

• Can be used in sets
§ i.e., you cannot have a set of lists

>>> s = {[1,2,3], [1], [2,3]}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Thought Question

How would we implement a good hash function for a
user-defined class?

0 >>> class Flower:
1 ... slots = ['sepals', 'petals']
2 ... def __hash__(self):
3 ... return self.petals + self.sepals
4 >>> rose = Flower()
5 >>> rose.petals = 10
6 >>> rose.sepals = 5
7 >>> hash(rose)
8 15

Would this be evenly distributed?
How to improve?!

Thought Question

How would we implement a good hash function for a
user-defined class?

def __hash__(self):
return '???'

What about for the Scotus class?
What about for Plaintext class?

questions?? ?
?? ?

?

??

?
Please contact me!

Leftover Slides

Keys

'tally'

'linus'

'pixel'

Hash
(Index)

2458

3083

3998

4360

7104

Buckets

tally

pixel

bananas

cheese

linus everything

…

…

…

…

…

…

Keys

'tally'

'linus'

'pixel'

Hash
(Index)

2458

3083

3998

4360

7104

Buckets

tally

pixel

bananas

cheese

linus everything

…

…

…

…

…

…

wally carrotsx

Overflow

