
building our own

RECURSIVE DATA STRUCTURES

Introduction to Computer Science
Iris Howley

week-at-a-glance



"It would be no small advantage 
if every college were thus located 

in a Glow/Canvas LMS." 
Adapted from Thoreau (1844)



CS
13

4 
Gl

ow
 H

om
ep

ag
e

As
sig

nm
en

ts
 &

 D
ea

dl
in

es
 a

pp
ea

r h
er

e!



HAPPENING THIS WEEK

• There is no quiz this week!
• (unless you're watching this on Friday, April 24)

• Homework 7 is due Monday, April 27
• Homework 8 will be released Wednesday

• Lab 9 was released Friday, April 24
• And it's due Thursday, April 30

• Lab 10 (extra credit) will be released Friday, May 1



THIS WEEK’S LESSON
Building our own recursive data 

structures

(We have the tools to build our own data structures)



• Monday
oWeek Overview
oBuilding our own data structures
o Elements

• Wednesday
o Element Methods
o Introducing the LinkedList wrapper class
oBuilding out the LinkedList class 

• Friday
oBinary Trees
oUsing Binary Trees
o Extra Credit Lab Intro

LECTURES THIS WEEK



Steps for Recursion

1. Know when to stop.
2. Decide how to take one, 

repeated step.
3. Break the journey down into 

that step plus a smaller 
journey.

7



Prior to lecture videos…

Complete:
1. POGIL Activities: Element & LinkedList & Binary Trees
• available under Glow > Modules
• also posted to the course website under Remote Lectures

• Best done prior to watching lectures!
• Good for working with a partner (virtually, too!)
• But will work without a partner, as well



Prior to this week's lessons…

Be able to:

1. Build & instantiate new classes & objects
• …with attributes and methods

2. Implement recursive functions



NO BOOK CHAPTERS 
THIS WEEK

Consult POGILs, slides, Lecture Notes

Highly recommended



questions?? ?
?? ?

?

??

?
Please contact me!



Building Our Own 
Data Structures

Introduction to Computer Science
Iris Howley



TODAY’S LESSON
Building our own list class

(We have the tools to build our own data structures)



What is a list? -> pydoc3 list



What is a list?



What is a list?

What is the last elephant holding onto? None



What is a list?

_next _next _next

class Element:

_value _value _value



SPECIAL METHODS

• We're familiar with __str__(self) which is called implicitly with 
str(object) and __init__(self) which is called implicitly when 
instantiating objects

• POGIL 27. Special Methods gives you broader exposure to more!

• Think: every built-in function we call + every operator



Special Methods

• len(object)
• ex: len('hello, world!')

§ Returns the length of the sequence, if possible

§ def __len__(self):
o# Write your own code
o# that calculates & returns
o# the length of the object, self



Special Methods

• indexableSequence[index]
• ex: myList[5]

§ Returns the object located at index of the indexableSequence, if 
possible

§ def __getitem__(self, index):
o# Write your own code
o# that finds the item at index
o# and returns it



Special Methods

• indexableSequence[index] = val
• ex: myList[5] = 'Something else.'

§ Assigns the object located at index to the value, val, if possible

§ def __setitem__(self, index, val):
o# Write your own code
o# that finds the item at index
o# and sets its value to val



Special Methods

• val in collection
• ex: 's' in 'iris'

§ Returns True if val exists in collection, False otherwise

§ def __contains__(self, val):
o# Write your own code
o# that finds if val exists in self
o# and returns True if found



Special Methods

• for item in iterableCollection:
• ex: for word in wordList:

§ Iterate across the items of the list

§ def __iter__(self):
o# Write your own code
o# to yield the next object in self



Some Common List Functions

• def append(self, val): Add val to the end of the 
list
• def extend(self, seq): Extend list by adding 

elements of seq
• def pop(self, index=None):Returns and removes 

the object located at index of the list, if possible
• def reverse(self):Reverse the list (destructively)
• def sort(self): Sort the list (destructively)



Common Features of All Classes

• Docstrings
• __all__
• __slots__
• Hidden attributes à @property, @____.setter



Tuples, Strings, other built-in 
types aren’t particularly special!

You can build your own!



questions?? ?
?? ?

?

??

?
Please contact me!



Elements of a 
Linked List

Introduction to Computer Science
Iris Howley



TODAY’S LESSON
A private class holding values in 

a list

(Building the Element class)



Linked Lists – Element Class

• See example code on the course website!

LinkedList.py



Testing @property + initializer in interactive 
python
>>> from LinkedList import Element
>>> ele1 = Element('a')
>>> ele1.value
'a'
>>> ele1.next
>>> ele2 = Element('b', ele1)
>>> ele2.value
'b'
>>> ele2.next
<LinkedList.Element object at 0x10feee8d0>
>>> ele2.next.value
'a'



>>> ll = Element(3)

>>> ll.next = Element(7)

>>> ll.value

3

>>> ll.next

<LinkedList.Element object at 
0x10feeebe0>

>>> ll.next.value

7

>>> ll.next.next = Element(1715)

>>> ll.next.next.value

1715

>>> ll.next.next.next = ll

>>> ll.value

3

>>> ll.next.value

7

>>> ll.next.next.value

1715

>>> ll.next.next.next.value

3

>>> ll.next.next.next.next.value

7

>>> ll.next.next.next.next.next.value

1715

>>> ll.next.next.next.next.next.next.value

3

>>> ll.next.next.next.next.next.next.next.value

7

>>> ll.next.next.next.next.next.next.next.next.value

1715

>>> 
ll.next.next.next.next.next.next.next.next.next.value

3

>>> ll.next

<LinkedList.Element object at 0x10feeebe0>

Testing @next.setter
in interactive python

Careful! We can make an infinite 
list by connecting the end to the 
beginning!



questions?? ?
?? ?

?

??

?
Please contact me!



Leftover Slides



Steps for Recursion
•Know when to stop.
•Decide how to take one step.
•Break the journey down into that 
step plus a smaller journey.

36


