building our own

RECURSIVE DATA STRUCTURES
WEEK-AT-A-GLANCE

)
\ (0 0)
/ " @@ Introduction to Computer Science
\ \ / Iris Howley

W\ W

AA

"It would be no small advantage

if every college were thus located
in a Glow/Canvas LMS."

Adapted from Thoreau (1844)

CS134 Glow Homepage

Mon Apr 13,2020

Wed Apr 15,2020

Thu Apr 16,2020

FriApr 17,2020

Mon Apr 20, 2020

Wed Apr 22,2020

Thu Apr 23,2020

Fri Apr 24,2020

Mon Apr 27,2020

Lecture 19: Class Attributes & Inheritance
POGIL: Inheritance (Encouraged, pre-lecture)

Homework 05

Lecture 20: Inheritance & Methods

POGIL: Calling Super Methods (Encouraged, pre-lecture)

Lab 7: Creating a Class

Lecture 21: Ciphers
POGIL: Type Conversion (Encouraged, pre-lecture)

Quiz 1

Brief Overview of this Week
Lecture 22: Introduction to Recursion
POGIL: Recursion (Optional, pre-lecture)

Homework 06

Lecture 23: Fruitful and Graphical Recursion

Lab 8: Classes and Inheritance

Lecture 24: Graphical Recursion Il

Quiz 2

Homework 07

due by 9:30am
due by 9:30am

due by 11pm

due by 9:30am

due by 9:30am

due by 11pm

due by 9:30am
due by 9:30am

due by 11:59pm

due by 9am
due by 9:30am
due by 9:30am

due by 11pm

due by 9:30am

due by 11pm

due by 2:30am

due by 11:5%9pm

due by 11pm

Assignments & Deadlines appear here!

HAPPENING THIS WEEK

* There is no quiz this week!
* (unless you're watching this on Friday, April 24)

* Homework 7 is due Monday, April 27

* Homework 8 will be released Wednesday

* Lab 9 was released Friday, April 24
 And it's due Thursday, April 30

* Lab 10 (extra credit) will be released Friday, May 1

THIS WEEK'S LESSON

Building our own recursive data

structures

(We have the tools to build our own data structures)

LECTURES THIS WEEK

* Monday
Week Overview
Building our own data structures
Elements

* Wednesday
Element Methods
Introducing the LinkedList wrapper class
Building out the LinkedList class

| © Friday

-~ Binary Trees

Using Binary Trees
Extra Credit Lab Intro

Recursive Approach
Ste pS fO r ReC urs I on * REDUCE the problem to smaller subproblem(s)

(smaller version(s) of itself)

Know when to stop. * DELEGATE the smaller problems to the
recursion fairy (formally known as induction

2. Decide how to take one, hypothesis) and assume they're solved correctly

repeated step. « COMBINE the solution(s) of the smaller

3. Break the journey down into subproblems to reach/return the solution
jchat step plus a smaller N
journey. N

Prior to lecture videos...

Complete:
1. POGIL Activities: Element & LinkedList & Binary Trees

* available under Glow > Modules
* also posted to the course website under Remote Lectures

* Best done prior to watching lectures!

* Good for working with a partner (virtually, too!)
e But will work without a partner, as well

Prior to this week's lessons...

Be able to:

1. Build & instantiate new classes & objects
e ...with attributes and methods

2. Implement recursive functions

\f 7‘

| NOBOOK CHAPTERS

THIS WEEK .
_l

Consult POGILs, slides

' Highly recommended
A y

?
P @UILE\SHLIMS

Building Our Own
Data Structures

)
\ (0 0)
/ " @@ Introduction to Computer Science
\ \ / Iris Howley

W\ W

AA

TODAY'S LESSON

Building our own list class

(We have the tools to build our own data structures)

What is a list? -> pydoc3 list

class list(object)
list() -> new empty list
list(iterable) —> new list initialized from iterable's items

Methods defined here:

__add__(self, value, /)
Return self+value.

__contains__(self, key, /)
Return key in self.

__delitem__(self, key, /)
Delete selfl[keyl].

eq__(self, value, /)

What is a list?

9

17 2012

\ A

What is a list?

9 w17 W2012
N 7 S T N

What is the last elephant holding onto?
None

What is a list?

class Element:

_value value

9 17

SPECIAL METHODS

* We're familiar with str (self) whichis called implicitly with
str(object)and init (self) whichis called implicitly when
instantiating objects

* POGIL 27. Special Methods gives you broader exposure to more!

e Think: every built-in function we call + every operator

/

7~

—

Special Methods

* len (object)

*ex: len('hello, world!')
Returns the length of the sequence, if possible

def len (self):

Write your own code
that calculates & returns

the length of the object, self

Special Methods

* indexableSequence[index]
cex:myList[5]

Returns the object located at index of the indexableSequence, if
possible

def getitem (self, index):
Write your own code
that finds the item at index
and returns it

Special Methods

val

* indexableSequence [index]

cex:myList[5] = 'Something else.'
Assigns the object located at index to the value, val, if possible

def setitem (self, index, wval):

Write your own code
that finds the item at index

and sets its wvalue to wval

Special Methods

*val in collection
ex: 's' in 'iris'
Returns True if val exists in collection, False otherwise

def contains_ (self, wval):
Write your own code
that finds if wval exists in self

and returns True if found

Special Methods

e for i1tem i1n iterableCollection:

° ex: for word in wordList:
Iterate across the items of the list

def iter (self):

Write your own code
to yield the next object in self

Some Common List Functions

*def append(self, wval) : Addval to the end of the
list

def extend(self, seq) : Extend list by adding
elements of seq

*def pop(self, index=None) :Returns and removes
the object located at index of the list, if possible

*def reverse (self) :Reverse the list (destructively)
*def sort(self) : Sort the list (destructively)

Common Features of All Classes

* Docstrings
° all

. slots

* Hidden attributes > Q@property, @ .setter

Tuples, Strings, other built-in
types aren’t particularly special!

iy

You can build your own!

?
P @UILE\SHLIMS

Elements of a
Linked List

()
(00

B o

Introduction to Computer Science
Iris Howley

\
/
\

W\

AA

>~ N

A

TODAY'S LESSON

A private class holding values 1in

a list

(Building the Element class)

Linked Lists — Element Class

* See example code on the course website!

LinkedList.py

Testing @property + initializer in interactive
python

>>> from LinkedList import Element
>>> elel = Element('a')

>>> elel.value

1o

>>> elel.next

>>> ele?2 = Element ('b', elel)

>>> eleZ.value

'

>>> eleZ.next

<LlnkedList.Element object at 0x10feee8d0>
>>> eleZ.next.value

Testing @next.setter ..,

.next.value

>>> 11.next
<LinkedList.Element object at 0x10feeebel>

|

IN INt tl th 7 :

In In erac IVe py On >>> 1]1.next.next.value :

1715 :

>>> 11 = Element (3) >>> 1] .next.next.next.value :

>>> 11 .next = Element (7) 3 :

>>> 11.value >>> 11.next.next.next.next.value :

|

3 / i

>>> 11.next.next.next.next.next.value !

>>> 11 .next '

| | . 1715 :

<LinkedList.Element object at >>> 11 .next.next.next.next.next.next.value |

Ox10feeebelO> :

3 !

>>> 11.next.value :

>>> 11 .next.next.next.next.next.next.next.value |

7 i

7 |

>>> 1l.next.next = Element (1715) >>> 11.next.next.next.next.next.next.next.next.value :
>>> 11.next.next.value 1715

1715 >>> 5

ll.next.next.next.next.next.next.next.next.next.value |

>>> 11 .next.next.next = 11 3 %

i

|

[

... i

?
P @UILE\SHLIMS

Leftover Slides

Steps for Recursion

*Know when to stop.
*Decide how to take one step.

*Break the journey down into that
step plus a smaller journey.

