
Inheritance
Introduction to Computer Science

Iris Howley

TODAY’S LESSON
Inheritance

(A hierarchy of objects for leveraging parents’ implementation)

Inheritance Syntax

class Robot:
__slots__ = ['name']
def __init__(self, nm):

self.name = nm
def introduce(self):

return 'I AM ' + self.name.upper()

>>> er1 = EvilRobot('Herbert')

>>> er1.name

'Herbert'

class EvilRobot(Robot):
morality = 'evil'

Super class

EvilRobot doesn't have an initializer with a parameter!

Declares the super class

But it seems to have a name attribute

Inheritance Syntax

class Robot:
__slots__ = ['name']
def __init__(self, nm):

self.name = nm
def introduce(self):

return 'I AM ' + self.name.upper()

>>> er1 = EvilRobot('Herbert')

>>> print(er1.introduce())

I AM HERBERT

class EvilRobot(Robot):
morality = 'evil'

Super class Declares the super class

But Robot does, and it is calling that!
EvilRobot doesn't have an introduce() method

EvilRobot doesn't have an initializer with a parameter!

Class Diagram: Robot

Robot

EvilRobot

EvilRobot is a Robot

EvilRobot is a sub-class of Robot

Robot is EvilRobot's super-class

Class Diagram: Robot

Robot

EvilRobot

EvilRobot is a Robot

EvilRobot is a sub-class of Robot

Robot is EvilRobot's super-class

A sub-class inherits
methods, attributes from
its super-class.
But a super-class does NOT
inherit from its sub-classes.
i.e., "A child inherits from
the parent."

Class Diagram: Playing Cards

Deck

Hand
Hand is a Deck

Deck has a Card

Deck is Hand's super-class

Card>

questions?? ?
?? ?

?

??

?
Please contact me!

Super Methods
Introduction to Computer Science

Iris Howley

TODAY’S LESSON
Super Methods

(Making use of the super class' methods)

class Robot:
__slots__ = ['name'] # instance attribute

def __init__(self, nm):
self.name = nm

class EvilRobot(Robot):
morality = 'evil' # class attribute
__slots__ = ['mission']

def __init__(self, misn):
self.mission = misn

What happens when both super &
sub-class have init method?

if __name__ == '__main__':

er1 = EvilRobot('Name or Mission?!')

print(er1.name)

print(er1.mission)

AttributeError: 'EvilRobot' object has no attribute 'name'

Name or Mission?!

The instance's __init__ method will be called (i.e.,
EvilRobot.__init(self, misn))

When a sub-class has the same
method with same number of

parameters as super-class, the sub-
class' method will be called.

What if I want both the sub- and
super- class methods to be called?

class Robot:
__slots__ = ['name'] # instance attribute

def __init__(self, nm):
self.name = nm

class EvilRobot(Robot):
morality = 'evil'
__slots__ = ['mission']

def __init__(self, nm, misn):
super().__init__(nm)
self.mission = misn

We can call the super class'
__init__ method explicitly, if we
want to use what's happening in
it. (i.e., give all robots a name!)

if __name__ == '__main__':

er1 = EvilRobot('Pearl', 'try to take over the
world.')

print(er1.name, er1.morality, er1.mission)
Pearl evil try to take over the world

Both __init__ methods will be called, if we explicitly
call the super class' __init_ in the sub-class' __init__

We can call the super-class'
methods, attributes explicitly using

super() instead of self.

This is true for methods that aren't
"special methods," too.

class Robot:
__slots__ = ['name'] # instance attribute

def __init__(self, nm):
self.name = nm

def introduce(self):
return 'I AM ' + self.name.upper()

class EvilRobot(Robot):
morality = 'evil' # class attribute
__slots__ = ['mission']

def __init__(self, nm, misn):
Robot.__init__(self, nm)
self.mission = misn

def introduce(self):
return self.mission.upper()

What happens when both super &
sub-class have the same method

(w. same # parameters)?

if __name__ == '__main__':

er1 = EvilRobot('Pearl', 'try to take over the
world.')

print(er1.name, er1.morality, er1.mission)

print(er1.introduce())

Pearl evil try to take over the world

TRY TO TAKE OVER THE WORLD

The instance's method will be called (i.e.,
EvilRobot.introduce())

class Robot:
__slots__ = ['name'] # instance attribute

def __init__(self, nm):
self.name = nm

def introduce(self):
return 'I AM ' + self.name.upper()

class EvilRobot(Robot):
morality = 'evil' # class attribute
__slots__ = ['mission']

def __init__(self, nm, misn):
Robot.__init__(self, nm)
self.mission = misn

def introduce(self):
return super().introduce() + '\n' + self.mission.upper()

…but we can call the super class'
methods explicitly!

if __name__ == '__main__':

er1 = EvilRobot('Pearl', 'try to take over the
world.')

print(er1.name, er1.morality, er1.mission)

print(er1.introduce())

Pearl evil try to take over the world

I AM PEARL
TRY TO TAKE OVER THE WORLD

And if we call the super class' method explicitly, it will also
be called.

questions?? ?
?? ?

?

??

?
Please contact me!

@property.setter
Introduction to Computer Science

Iris Howley

TODAY’S LESSON
Setter methods.

(Like @property, but for modifying properties)

class Robot:
__slots__ = ['_name'] # instance attribute

@property

def name(self):
return self._name

if __name__ == '__main__'
robit = Robot()

robit._name = 'James Franco'

print(robit.name)

@property decorator allows us to
access a method like an attribute

class Robot:
__slots__ = ['_name'] # instance attribute

@property

def name(self):
return self._name

if __name__ == '__main__'
robit = Robot()

robit._name = 'James Franco'

print(robit.name)

But to modify that attribute, we
still have to access through the

underscore attribute name.

UNDERSCORE GUILT!

class Robot:
__slots__ = ['_name'] # instance attribute

@property
def name(self):

return self._name
@name.setter
def name(self, value):

self._name = value

if __name__ == '__main__'
robit = Robot()
robit.name = 'James Franco'
print(robit.name)

We can use another decorator,
@<PROPERTY>.setter to
allow us to modify a property.

This decorator tells python which
method to call when the property
appears on the left-hand side of

an assignment operator.

YOU CANNOT HAVE A
@property.setter
WITHOUT FIRST DEFINING THE
PROPERTY WITH @property

WHEN WOULD WE WANT AN
@property OR

@property.setter
TO DO SOMETHING MORE

COMPLEX?

More Complex Property Methods

• Consider a temperature object
§ Has a temperature in Kelvin as an instance attribute
§ But can access the Celsius temperature equivalencies through a celsius

property
§ If you change the celsius value of the Temperature object, it really just

changes the Kelvin attribute appropriately

POGIL 26. Classes: Properties covers this in considerable depth.

More Complex Property Methods

class Temperature:
__slots__ = ['_kelvin']
@property
def celsius(self):
return self._kelvin - 273.15

@celsius.setter
def celsius(self, val):
self._kelvin = val + 273.15

(It would make sense to make a kelvin @property, too…)

More Complex Property Methods

>>> t1 = Temperature()
>>> t1.celsius = 0

>>> t1._kelvin

273.15
>>> t1.celsius

0.0

uses @celsius.setter
accesses the _kelvin attribute directly

uses the @property for def celsius

More Complex Property Methods

class Temperature:
__slots__ = ['_kelvin']
@property
def celsius(self):
return self._kelvin - 273.15

@celsius.setter
def celsius(self, val):
self._kelvin = val + 273.15

(It would make sense to make a kelvin @property, too…)

OBJECT-ORIENTED DESIGN
Determine what classes you need and how

they interact.

ENCAPSULATION
What should be the public interface for our

programs?
What internal workings should be hidden?

questions?? ?
?? ?

?

??

?
Please contact me!

Well-defined
Classes

Introduction to Computer Science
Iris Howley

TODAY’S LESSON
Well-defined classes.

(Leveraging the class-building tools so far)

Well-defined Classes

1. Top-level docstring + every method has a docstring
§ Describe parameters and/or return values
§ In-line comments as needed

2. Meaningful variable/parameter/attribute/method names
3. __slots__ defined to limit attributes
4. Private helper methods & attributes start with an _underscore to "hide"

them
5. Private attributes that need to be accessed are given an @property

method
6. Private attributes that need to be modified are given an @property

method and an @<property>.setter method.
7. Doctests for methods
8. __str__(self) method, useful for debugging

See example Robot.py code on website

questions?? ?
?? ?

?

??

?
Please contact me!

Leftover Slides

class Robot:

__slots__ = ['name']

def __init__(self, nm):
self.name = nm

class PurposeRobot(Robot):

__slots__ = ['mission']
def __init__(self, nm, misn):

super().__init__(nm)

self.mission = misn

super().__init__(nm)
is the same as:

Robot.__init__(self, nm)

Calling Super Methods with super()

super() lets us call the super-
class implicitly…

...and we no longer need to pass
self

