OBJECT-ORIENTED DESIGN
WEEK AT A GLANCE

)
\ (0 0)
/ " @@ Introduction to Computer Science
\ \ / Iris Howley

W\ W

AA

HAPPENING THIS WEEK

* There's a quiz this Friday, April 17
* Check Glow!

* Homework 5 is due Monday, April 13

e Homework 6 will be released Wednesday, April 15

e Lab 7 was released Friday, April 10
* And it's due Thursday, April 16

/_« Lab 8 will be released Friday, April 17

—

Q

LECTURES THIS WEEK

* Monday
Week Overview
Class Attributes
Inheritance Example

* Wednesday
Inheritance Syntax
Super Methods
Well-defined Classes

| © Friday

e T :
ype conversion

Ciphers

Lab Intro

Prior to lecture videos...

Complete:
1. POGIL Activities: Inheritance

* available under Glow > Modules
* also posted to the course website under Remote Lectures

* Best done prior to watching lectures!

* Good for working with a partner (virtually, too!)
e But will work without a partner, as well

Prior to this week's lessons...

Be able to:
1. Build & instantiate new classes & objects

2. ...with attributes and methods

\” B g ‘
BOOK CHAPTER 18.
INHERITANCE

Step through it!!!!
Highly recommended J
A >

?
P @UILE\SHLIMS

Class Attributes

)

(
___(00)

S

\
Introduction to Computer Science

/

\ : Iris Howley

\\ O\

AA

>~ N

A

TODAY'S LESSON

Class Attributes

(Some classes share some attributes across all instances)

Class Attributes Syntax

class EvilRobot: _ o
morality = 'evil' Class attribute inside of the class

Restricting the instance attributes

slots = ["name']
(

def _init (self, nm):| (|ass methods

self.name = nm

>>> erl = EvilRobot ('Herbert')
>>> erl.morality
'evil" Accessing the class attribute through the instance

>>> erl.name
'Herbert ' Accessingthe instance attribute

Class Attributes Syntax

class EvilRobot:
morality = 'evil'

__slots = ['name']
def init (self, nm):

self.name = nm

>>> er”?2 = EvilRobot ('Pearl')
>>> erZ2.morality

'evil'

>>> erZ.name

'Pearl'’

Changing Class Attributes' Values

class EvilRobot:
morality = 'evil'

__slots = ['name']
def init (self, nm):

self.name = nm

Uses the CLASS name, not the instance name to re-assign!
>>> EvilRobot.morality = 'bad'

>>> erl.morality
'bad' Changesthemorality value for all objects of this type

>>> erZ2.morality
'bad'

Changing Instance Attributes' Values

class EvilRobot:
morality = 'evil'

__slots = ['name']
def init (self, nm):

self.name= nm

Uses the INSTANCE name, not the class name to re-assign!
>>> erl.name = 'Herbert the 2nd’

>>> erl.nameChanges the name value for the specified instance
'Herbert the 2nd’

>>> erZ.name
'Pearl' Doesnotchange the name value for other instances

An Example

‘lmage’ce: Fine Art An:l_e.rjp_,c‘v_,:, :ﬂ

Playing Cards

* Each card has a suit (one of 4)
Diamonds
Hearts
Clubs
Spades

&
\ 4

¢
o

Playing Cards

* Each card has a rank:

2-10

Jack (11)
Queen (12)
King (13)
Ace

THE

13 RANKS
10 9
& »
10 9
. 3
& o
4 3

K
b

KING

7
&

i

Q J
&b b
QUEEN JACK
6 5
& &

6 5

Image source: World Series of Poker

class Card:
""" Represents a standard playing card. """
Instance Attributes
__slots = ['suit', 'rank']

Class Attributes

sult names = ['Clubs', 'Diamonds', 'Hearts', 'Spades’']

rank names =
[None, 'Ace!','2'",'3"'",'4",'5",'6","/",'8"'",'9'",'10"', "Jack', 'Queen', 'King']

def 1init (self, suit=0, rank=2):
self.sult = suit
self.rank = rank

def str (self) :

return '{} of {}'.format (Card.rank names|[self.rank],
Card.sult names|[self.suit])

1f name == ! main .

_; Tesgzng Ca;a
queenOfDiamonds = Card(1l, 12)
print (queenOfDiamonds) # Queen of Diamonds

See how cl.suit names == c2.suit names
But not cl.suit == c2.suit

cl = Card(2,11)

print (cl)

print ("\tClass Attribute:", cl.suit names)
print ("\tInstance Attribute:", cl.suit) # 2

c2 = Card(3,5)

print (c2)

print ("\tClass Attribute:", c2.suit names)
print ("\tInstance Attribute:", c2.suit) # 3

Queen of Diamonds

Jack of Hearts

Class Attribute: ['Clubs', 'Diamonds', 'Hearts', 'Spades']
Instance Attribute: 2

5 of Spades

Class Attribute: ['Clubs', 'Diamonds', 'Hearts', 'Spades']
Instance Attribute: 3
== True

print ("==", cl.sult names == c2Z.sult names)

This will print '== True'

?
P @UILE\SHLIMS

W

\\

Vo~ o~
)/\ (@
P
8o
?®

>

Inheritance:
Example

Introduction to Computer Science

Iris Howley

TODAY'S LESSON

Inheritance

(A hierarchy of objects for leveraging parents’ implementation)

Playing Card Deck (Poker)

* 52 cards
= 13 ranks x 4 suits =52
“ One of each card, every combination

class Deck:
""" Represents a playing card deck. """ def pop_card(self):

slots = ['cards'] return self.cards.pop /()

def init (self):

def add card(self, card):
self.cards = [] -

self.cards.append (card
for suit in range (4): calt ppend (card)

for rank in range(l,14):

card = Card(suit, rank) def shuffle(self):
self.cards.append (card) random.shuffle(self.cards)
def str (self):
res = [str(card) for card in self.cards]

#res = []

#for card in self.cards:

res.append (str (card))
return '\n'.join (res)

1f name == maln '

Testing Deck
thedeck = Deck ()
Prints each card name on 50+ lines
print ("\t\t', thedeck, len (thedeck.cards))
Last linewillbe: K1ng of Spades 52

thedeck.pop card()

Prints each card name on 50+ lines
print ("\t\t', thedeck, len (thedeck.cards))

Last line willbe: Queen of Spades ol

Playing Card Hand

* The cards held by one player
= Typically empty
* One card at a time added from the Deck

class| Hand (Deck) :

" Represents a playing hand """
slots = ["label']

def 1nit (self, label='"):
self.cards = []
self.label = label

1f name == maln '

Testing Hand
hand = Hand ('new hand')
print ('cards:',hand.cards)

print ('label:',hand. label)

Dealing a Hand

* Take one card from the Deck
* Add it to the player's Hand

Dealing a Hand

* Take one card from the Deck
* Add it to the player's Hand

>>> deck = Deck()

>>> hand = Hand('player 1')
>>> card = deck.pop card()
>>> hand.add card(card)

>>> print (hand)

King of Spades

hand only contains one card, King of Spaces!

Dealing a Hand

* Take many cards from the Deck
* Add them all to the player's Hand

Dealing a Hand

* Take many cards from the Deck
* Add them all to the player's Hand

* Add to Deck:

def move cards(self, hand, num):
for 1 1n range (num) :
hand.add card(self.pop card())

1f name == ' main ':

Testing Hand/Deck
plhand = Hand('player 1")
newDeck = Deck ()
print ("Starter Deck:", len(newDeck.cards))
print ("Starter Hand:", plhand)
newDeck.shuffle ()
newDeck.move cards (plhand, 5)
print ("Final Deck:", len (newDeck.cards))

print ("Final Hand:", plhand)

?
P @UILE\SHLIMS

Leftover Slides

