
OBJECT-ORIENTED DESIGN

Introduction to Computer Science
Iris Howley

week-at-a-glance

HAPPENING THIS WEEK

• There's a quiz this Friday, April 17
• Check Glow!

• Homework 5 is due Monday, April 13
• Homework 6 will be released Wednesday, April 15

• Lab 7 was released Friday, April 10
• And it's due Thursday, April 16

• Lab 8 will be released Friday, April 17

• Monday
oWeek Overview
oClass Attributes
o Inheritance Example

• Wednesday
o Inheritance Syntax
o Super Methods
oWell-defined Classes

• Friday
o Type conversion
oCiphers
o Lab Intro

LECTURES THIS WEEK

Prior to lecture videos…

Complete:
1. POGIL Activities: Inheritance
• available under Glow > Modules
• also posted to the course website under Remote Lectures

• Best done prior to watching lectures!
• Good for working with a partner (virtually, too!)
• But will work without a partner, as well

Prior to this week's lessons…

Be able to:
1. Build & instantiate new classes & objects
2. …with attributes and methods

BOOK CHAPTER 18.
INHERITANCE

Step through it!!!!

Highly recommended

questions?? ?
?? ?

?

??

?
Please contact me!

Class Attributes
Introduction to Computer Science

Iris Howley

TODAY’S LESSON
Class Attributes

(Some classes share some attributes across all instances)

Class Attributes Syntax

class EvilRobot:
morality = 'evil'

__slots__ = ['name']
def __init__(self, nm):

self.name = nm

>>> er1 = EvilRobot('Herbert')
>>> er1.morality
'evil'
>>> er1.name
'Herbert'

Class attribute inside of the class

Class methods

Accessing the class attribute through the instance

Restricting the instance attributes

Accessing the instance attribute

Class Attributes Syntax

class EvilRobot:
morality = 'evil'

__slots__ = ['name']
def __init__(self, nm):

self.name = nm

>>> er2 = EvilRobot('Pearl')
>>> er2.morality
'evil'
>>> er2.name
'Pearl'

Changing Class Attributes' Values

class EvilRobot:
morality = 'evil'

__slots__ = ['name']
def __init__(self, nm):

self.name = nm

>>> EvilRobot.morality = 'bad'
>>> er1.morality
'bad'
>>> er2.morality
'bad'

Changes the morality value for all objects of this type

Uses the CLASS name, not the instance name to re-assign!

Changing Instance Attributes' Values

class EvilRobot:
morality = 'evil'

__slots__ = ['name']
def __init__(self, nm):

self.name= nm

>>> er1.name = 'Herbert the 2nd'
>>> er1.name
'Herbert the 2nd'
>>> er2.name
'Pearl'

Changes the name value for the specified instance

Uses the INSTANCE name, not the class name to re-assign!

Does not change the name value for other instances

An Example

Image source: Fine Art America

Playing Cards

• Each card has a suit (one of 4)
§ Diamonds
§ Hearts
§ Clubs
§ Spades

Playing Cards

• Each card has a rank:
§ 2-10
§ Jack (11)
§ Queen (12)
§ King (13)
§ Ace

Image source: World Series of Poker

class Card:
""" Represents a standard playing card. """
Instance Attributes
__slots__ = ['suit','rank']

Class Attributes
suit_names = ['Clubs','Diamonds','Hearts','Spades']
rank_names =

[None,'Ace','2','3','4','5','6','7','8','9','10','Jack','Queen','King']

def __init__(self, suit=0, rank=2):
self.suit = suit
self.rank = rank

def __str__(self):
return '{} of {}'.format(Card.rank_names[self.rank],

Card.suit_names[self.suit])

if __name__ == '__main__':
Testing Card
queenOfDiamonds = Card(1, 12)
print(queenOfDiamonds) # Queen of Diamonds

See how c1.suit_names == c2.suit_names
But not c1.suit == c2.suit
c1 = Card(2,11)
print(c1)
print("\tClass Attribute:", c1.suit_names)
print("\tInstance Attribute:", c1.suit) # 2

c2 = Card(3,5)
print(c2)
print("\tClass Attribute:", c2.suit_names)
print("\tInstance Attribute:", c2.suit) # 3

print("==", c1.suit_names == c2.suit_names)
This will print '== True'

Queen of Diamonds

Jack of Hearts

Class Attribute: ['Clubs', 'Diamonds', 'Hearts', 'Spades']

Instance Attribute: 2

5 of Spades

Class Attribute: ['Clubs', 'Diamonds', 'Hearts', 'Spades']

Instance Attribute: 3

== True

print("==", c1.suit_names == c2.suit_names)
This will print '== True'

questions?? ?
?? ?

?

??

?
Please contact me!

Inheritance:
Example
Introduction to Computer Science

Iris Howley

TODAY’S LESSON
Inheritance

(A hierarchy of objects for leveraging parents’ implementation)

Image source: Fine Art America

Playing Card Deck (Poker)

• 52 cards
§ 13 ranks x 4 suits = 52
§ One of each card, every combination

class Deck:
""" Represents a playing card deck. """
__slots__ = ['cards']

def __init__(self):
self.cards = []
for suit in range(4):

for rank in range(1,14):
card = Card(suit, rank)
self.cards.append(card)

def __str__(self):
res = [str(card) for card in self.cards]
#res = []
#for card in self.cards:
res.append(str(card))
return '\n'.join(res)

def pop_card(self):

return self.cards.pop()

def add_card(self, card):

self.cards.append(card)

def shuffle(self):

random.shuffle(self.cards)

if __name__ == '__main__':
Testing Deck

thedeck = Deck()

print('\t\t',thedeck, len(thedeck.cards))

thedeck.pop_card()

print('\t\t',thedeck, len(thedeck.cards))

Last line will be: King of Spades 52

Last line will be: Queen of Spades 51

Prints each card name on 50+ lines

Prints each card name on 50+ lines

Image source: Fine Art America

Playing Card Hand

• The cards held by one player
§ Typically empty
§ One card at a time added from the Deck

class Hand(Deck):
""" Represents a playing hand """

__slots__ = ['label']

def __init__(self, label=''):
self.cards = []

self.label = label

if __name__ == '__main__':

Testing Hand

hand = Hand('new hand')

print('cards:',hand.cards)
print('label:',hand.label)

[]

'new hand'

Image source: Fine Art America

Dealing a Hand

• Take one card from the Deck
• Add it to the player's Hand

Image source: Fine Art America

Dealing a Hand

• Take one card from the Deck
• Add it to the player's Hand

>>> deck = Deck()
>>> hand = Hand('player 1')
>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print(hand)
King of Spades

hand only contains one card, King of Spaces!

Image source: Fine Art America

Dealing a Hand

• Take many cards from the Deck
• Add them all to the player's Hand

Image source: Fine Art America

Dealing a Hand

• Take many cards from the Deck
• Add them all to the player's Hand

• Add to Deck:
def move_cards(self, hand, num):

for i in range(num):
hand.add_card(self.pop_card())

if __name__ == '__main__':
Testing Hand/Deck

p1hand = Hand('player 1')
newDeck = Deck()
print("Starter Deck:", len(newDeck.cards))
print("Starter Hand:", p1hand)
newDeck.shuffle()
newDeck.move_cards(p1hand, 5)
print("Final Deck:", len(newDeck.cards))
print("Final Hand:", p1hand)

52

47
2 of Clubs
7 of Spades
9 of Spades
8 of Diamonds
2 of Spades

questions?? ?
?? ?

?

??

?
Please contact me!

Leftover Slides

