
On your way in…

Pick-up:
1. POGIL Activity: Classes 24b, 25b
• Slots
• Methods (Replaces 25)

• (No homework today!)
•Midterm has been postponed.

Midterm Exam is Thursday, March 12

• TPL 203: 5:45pm-7:45pm OR 8-10pm.
• The midterm exam has been postponed.

• Closed book exam
• Review your homeworks! POGILs! Slides! Labs!

• HW4 Solutions: On the course website, here
• Midterm Review Notes: On course website, here

https://williams-cs.github.io/cs134-s20-www/hws/hw04-answers.pdf
https://williams-cs.github.io/cs134-s20-www/iris-lectures/MidtermReviewSession.pdf

announcements

• As classes have been canceled next week…

• Midterm exam has been postponed until after spring break
• TA Student Help Hours are canceled Wednesday & Thursday
• Iris has Student Help hours Thursday 10a-12p

o Shikha’s Student Help Hours are canceled unless otherwise noted

Please read email from Shikha at
1:30pm today/Wednesday
“Midterm postponed and
logistics on going remote"

Please fill out the CS134 Remote Questionnaire (click here)

You might be able to borrow a laptop longterm from the library.

The CS department has a page of Resources for Remote Work.
Please bring your personal laptop to class on Friday

so we can try to get you set-up.

https://forms.gle/MBhoE81qmiq1Yyf26
https://forms.gle/c5J2pWjbGMrWA2zt9
https://www.cs.williams.edu/system/

Spring 2020

Welcome to CS 134!
Introduction to Computer Science

Iris Howley

-Random & Iterators & Classes-

TODAY’S LESSON
Getting & using random values

(Unpredictable values are useful for certain tasks, like shuffling.)

random.randint

>>> import random
>>> random.randint(0,1)

0

>>> random.randint(0,1)
1

>>> random.randint(0,1)

0 >>> randNums = [randint(5,40) for _ in range(5)]
>>> randNums

[11, 18, 22, 13, 13]

Randomly selects an integer between two given bounds, inclusive

Underscore means
it’s a variable we
don’t care about

random.choice

>>> import random
>>> random.choice('abcdefg')
'b'
>>> random.choice('abcdefg')
'd'
>>> random.choice('abcdefg')
'f'
>>> random.choice('abcdefg')
'c'
>>> random.choice('abcdefg')
'f'

>>> random.choice([0,1,2,6,7])
6
>>> random.choice([0,1,2,6,7])
0
>>> random.choice([0,1,2,6,7])
1
>>> random.choice([0,1,2,6,7])
7
>>> random.choice([0,1,2,6,7])
0
>>> random.choice([0,1,2,6,7])
0

Randomly selects and returns an element from a given sequence

random.shuffle

>>> import random
>>> random.shuffle([0,1,2,6,7])

>>> lst = [0,1,2,6,7]

>>> random.shuffle(lst)
>>> lst

[2, 1, 7, 6, 0]

>>> yogi = ['yabba','dabba','do']

>>> random.shuffle(yogi)

>>> yogi

['do', 'yabba', 'dabba']

>>> random.shuffle(yogi)

>>> yogi

['dabba', 'yabba', 'do']

Destructively, randomly reorders a mutable sequence

random.random
>>> import random
>>> random.random()
0.016353005994267367
>>> random.random()
0.7041482747508325

>>> random.random()
0.25723963079251566
>>> random.random()
0.10301513331081114
>>> random.random()
0.5367112693767642
>>> random.random()
0.09446571726550657

>>> random.random()
0.3013371664986967

Return the next random floating point number in the range [0.0, 1.0).

WHAT’S RANDOM USEFUL FOR?

Python Documentation on Random

https://docs.python.org/3/library/random.html

https://docs.python.org/3/library/random.html

TODAY’S LESSON
Iterators

(objects that return one element at a time)

Recall the Mystery Function from POGIL21 on Generators

>>> next(g)
2
>>> next(g)
3
>>> next(g)
5
>>> next(g)
8

g = mystery()
>>> g
<generator object mystery
at 0x10be119e8>
>>> next(g)

0
>>> next(g)
1
>>> next(g)
1

>>> next(g)
13
>>> next(g)
21
>>> next(g)
34
>>> next(g)
55

Iterators

• We’ve been using iterators all along!
• The for statement calls iter() on ‘hello’ string
• iter() returns an iterator which has a __next__() method,

which goes in and accesses each element in ‘hello’
§ Returning one at a time!

• When it runs out of elements, it raises a StopIteration
exception, so the for..loop terminates

for letter in ‘hello’:
print(letter)

Iterators

s = 'abc’
it = iter(s)
it <str_iterator object at

0x107a58668>
next(it) 'a'
next(it) 'b'
next(it) 'c'
next(it)

• Traceback (most recent call last): File
"<stdin>", line 1, in <module> next(it)
StopIteration

An Example

s = 'hi!'
it = iter(s)

try:

… print(next(it))
… print(next(it))

… print(next(it))

… print(next(it))

…except StopIteration:
… print("ERROR. Ran outta juice!")

h
i
!
ERROR. Ran outta juice!

For..loops

• for item in mylist:
§ print(item)

• try:
§ it=iter(mylist)
§ while True:

oitem = next(it)
oprint(item)

• except StopIteration:
§ pass

This is really:

Python Tutorial on Iterators

• Getting to the end of our textbook!
• https://docs.python.org/3/tutorial/classes.html#iterators

https://docs.python.org/3/tutorial/classes.html

TODAY’S LESSON
Classes

(Creating new types of objects to help with encapsulation)

POGIL 25B REPLACES POGIL 25 FROM MONDAY

Book Chapters 15, 16, 17

SO INCREDIBLY HELPFUL
Step through it!!!!

Highly, highly, extremely recommended

Deslauriers et al (2019). “Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom”

https://www.pnas.org/content/116/39/19251

POGIL Activity 25b – Classes: Methods

• Look at Python Activity 25b, Questions 4-5 (we skimmed 1-3 Monday)
• Find a partner and talk through the questions together

POGIL – Activity 25b: Question 1

POGIL – Activity 25b: Question 2

POGIL – Activity 25b: Question 3

POGIL – Activity 25b: Question 4

POGIL – Activity 25b: Question 5

betterEL._items.append(8)

betterEL.append(8)

POGIL – Activity 25b: Question 5

betterEL._items.append(8)

betterEL.append(8)

The underscore _ in python

• In python, objects that start with an underscore are “hidden”
• They’re not really hidden, but it’s a convention to imply that they shouldn’t be

accessed publicly
• If you’re using an object name that starts with an underscore outside of a

class definition, you should feel GUILTY

• This goes for double-underscore __<name>__ objects in python too!

• Using a variable name that is an underscore, means you don’t plan to
ever use that variable:
• for _ in range(5):

• print(“Hello repeat!”)

YOU SHOULD COMPLETE THE REST OF

ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!

questions?
? ?

?? ?
?

??

??

Leftover Slides

POGIL Activity 24b – Classes: Slots

• Look at Python Activity 24b, Questions 1-4
• Find a partner and talk through the questions together

POGIL – Activity 24b: Question 1

POGIL – Activity 24b: Question 2

POGIL – Activity 24b: Question 3

POGIL – Activity 24b: Question 4

POGIL – Activity 24b: Question 4

Class Syntax

class Book:
__slots__ = [‘_title’]
def __init__(self):

self._title = ‘’
def addTitle(self, txt):

self._title += txt
>>> b = Book()
>>> b._title
‘’
>>>b.addTitle(“Harry Potter”)
>>> b._title
‘Harry Potter’

We’re defining a new type of object

Only attribute for Book is ‘_title’
Initializer is implicitly called when we create a new Book

The name of the new type

Methods must always be passed self as parameter
Object attributes are always accessed through self.

Makes a new book, implicitly calls __init__()
If init() weren’t called, this would throw an error!

Even though method definition
has self, method call does not!

_title starts with underscore, so we shouldn’t use it!
There’s something else we should use instead…

Generators

def countTo(n):
i = 1
while i <= n:

yield i
i+= 1

g = countTo(3)
print(next(g)) 1
print(next(g)) 2

print(next(g)) 3
print(next(g))

ERROR StopIteration

Generators

def countTo(n):
i = 1
while i <= n:

yield i
i+= 1

g = countTo(3)
print(next(g)) 1
print(next(g)) 2

print(countRet(5)) 1
print(countRet(5)) 1
print(countRet(5)) 1

def countRet(n):
i = 1
while i <= n:

return i
i+= 1

Can have multiple return statements

def multRet(num):
if num <= 0:

return num
else:

return “+++”

def countRet(n):
i = 1
while i <= n:

return i
i+= 1

Once we reach ‘return’
we never get past it!
i is never incremented!

”+++” is only returned if
“return num” is never
reached, i.e., when num
is greater than 0.

