On your way In...

Pick-up:
1. POGIL Activity: Classes 24b, 25b

e Slots
* Methods (Replaces 25)

* (No homework today!)
* Midterm has been postponed.



Midterm Exam is Thursday, March 12

* The midterm exam has been postponed.

* Closed book exam

* Review your homeworks! POGILs! Slides! Labs!

e HW4 Solutions:
e Midterm Review Notes:



https://williams-cs.github.io/cs134-s20-www/hws/hw04-answers.pdf
https://williams-cs.github.io/cs134-s20-www/iris-lectures/MidtermReviewSession.pdf

1:30pm today/Wednesday

“Midterm postponed and
* As classes have been canceled next week... logistics on going remote”

* Midterm exam has been postponed until after spriﬁé break N
* TA Student Help Hours are canceled Wednesday & Thursday
* Iris has Student Help hours Thursday 10a-12p

Shikha’s Student Help Hours are canceled unless otherwise noted

/ Please fill out the
-~ The CS department has a page of
S—

Please bring your personal laptop to class on Friday
so we can try to get you set-up.
You might be able to from the library.


https://forms.gle/MBhoE81qmiq1Yyf26
https://forms.gle/c5J2pWjbGMrWA2zt9
https://www.cs.williams.edu/system/

Welcome to CS 134!

Introduction to Computer Science ( )
Iris Howley
(0 0) /
-Random & lterators & Classes- @@ \
\ /

A

Spring 2020



TODAY'S LESSON

Getting & using random values

(Unpredictable values are useful for certain tasks, like shuffling.)




random.randint

Randomly selects an integer between two given bounds, inclusive

>>> 1mport random

>>> random.randint (0, 1)
Underscore means

it’s a variable we

0
>>> random.randint (0, 1) don’t care about
1

>>> random.randint (0, 1)

0 >>> randNums = [randint (5,40) for " in range (5)]
>>> randNums
(11, 18, 22, 13, 13]



random.choice

Randomly selects and returns an element from a given sequence

>>>
>>>
!
>>>
g’
>>>
1f
>>>
1ot
>>>
1f

import

random.

random.

random.

random.

random.

random
choice ('abcdefg')

choice ('abcdefg')

choice ('abcdefg')

choice ('abcdefg')

choice ('abcdefg')

>>> random.choice ([0,1,2,6,7])

0
>>>

0
>>>

1
>>2>

'/
>>2>

random.

random.

random.

random.

random.

choice ([0,1,2,06,7])

choice ([0,1,2,06,7])

choice ([0,1,2,06,7])

choice ([0,1,2,06,7])

choice ([0,1,2,06,7])



random.shuffle

Destructively, randomly reorders a mutable sequence

>>> 1mport random
>>> random.shuffle([0,1,2,6,7])

>>> 1st = [0,1,2,0,7] >>> yogi = ['yabba', 'dabba', 'do']
>>> random.shuffle(lst) >>> random.shuffle(yogi)
>>> 1st >>> yogi
(2, 1, 7, 6, 0] ['do', 'yabba', 'dabba']
>>> random.shuffle (yogi)
>>> yogl
[ 'dabba', 'vyabba', 'do']



random.random

Return the next random floating point number in the range [0.0, 1.0).

>>> import random
>>> random.random ()
0.016353005994267367
>>> random.random ()
0.7041482747508325
>>> random.random ()
0.25723963079251566
>>> random.random ()
0.10301513331081114
>>> random.random ()
0.5367112693767642
>>> random.random ()
0.09446571726550657
>>> random.random ()
0.3013371664986967



WHAT'S RANDOM USEFUL FOR?



Python Documentation on Random

https://docs.python.org/3/library/random.html



https://docs.python.org/3/library/random.html

TODAY'S LESSON

Iterators

(objects that return one element at a time)




Recall the Mystery Function from POGIL21 on Generators

def mystery(a = 0, b =

yield a
yield b
while True:

1):

a, b =D>b, atb

yield b
g = mystery ()
S>> g >>>
<generator object mystery 2
at 0x10bell%e8> S5
>>> next (qg)
0 3
>>> next (qg) >>2>
1 9
>>> next (qg) >>>
! 8

next (g)

next (g)

next (g)

next (g)

>>2>

13
>>>

21
>>>
34
>>>
55

next (g)

next (g)

next (g)

next (g)



Article Talk Read Edit View history | Search Wikipedia

Fibonacci number

From Wikipedia, the free encyclopedia

"Fibonacci Sequence" redirects here. For the chamber ensemble, see Fibonacci Sequence (ensemble).

In mathematics, the Fibonacci numbers, commonly denoted F),,
form a sequence, called the Fibonacci sequence, such that each @) save
number is the sum of the two preceding ones, starting from 0 and 1.

0, Fl=1, 21

3
F,=Fy 1+ Fy», 5

forn> 1.
A tiling with squares whose side lengths are &

The beginning of the sequence is thus: e [ et e o T o e e
0,1, 1,2 3,5, 8, 13, 21, 34, 55, 89, 144, ... 21.




[terators for letter in ‘hello’:
print(letter)

* We’ve been using iterators all along!
* The for statement calls iter () on ‘hello’ string

*iter () returnsan iterator whichhasa next () method,
which goes in and accesses each element in ‘hello’
Returning one at a time!

* When it runs out of elements, it raisesa StopIteration
exception, so the for..loop terminates



Ilterators

>>>s = 'abc’

>>>1t = 1ter (s)

>>>1t <str 1terator object at
0x107a58668>

>>>next (1t) 'a'

>>>next (1t) 'b'

>>>next (1t) 'c'

>>>next (1t)

* Traceback (most recent call last): File

"<stdin>", line 1, 1n <module> next (1t)
Stoplteration



An Example

>>>s = 'ha!'

Ran outta juice!

>>>1t = 1ter (s)

>>>try:

..except Stoplteration:
print ("ERROR. Ran outta juice!")



For..loops

* for item in mylist: *try:
print(item) it=1ter (mylist)
while True:
.- ) item = next(it)
This is really: rint (item)

* except StopIteration:
pass



Python Tutorial on Iterators

* Getting to the end of our textbook!
* https://docs.python.org/3/tutorial/classes.html#iterators



https://docs.python.org/3/tutorial/classes.html

TUDAY S LESSON

Classes

(Creating new types of objects to help with encapsulation)




V' 7

Book Chapters 15, 16, 17

0 INCREDIBLY HELPFUL

Step through it!!!!
' Highly, highly, extremely recommended J
A ol




| STATICS .
09 - W passive Cae

3 W active '
v 08 - g
g 07 - i
2 s
- : - 35 €
X 06 - 5 o
£ : =

: o
n : ]
= 05 - ; L3 B
) : -
£ E o
€ 04 - ; ]
o 5 - 2.9 E
= :
S 03 - 5
e 0.2 - ;
) :
) :
S 1 I~ 1.5
8 01 - E
"' :

0 - : -1
Test of learning | enjoyed this | feel like | learned Instructor was | wish all my
lecture a great deal from effective at physics courses
this lecture teaching were taught this
way

Deslauriers et al (2019). “Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom”



https://www.pnas.org/content/116/39/19251

POGIL Activity 25b — Classes: Methods

* Look at Python Activity 25b, Questions 4-5 (we skimmed 1-3 Monday)
* Find a partner and talk through the questions together



POGIL — Activity 25b: Question 1

1.

Examine the following code from interactive python below.

Interactive Python
0 >>> example = list()
1 >>> example.append(2)
2 >>> example.append(4)
3 >>> example
4 [2, 4]
a. What type of object is example? How do you know?
b. When we call . append () which object are we appending to? How do you know?
c. If we reassigned example tobe ‘24’ what would . append () do?

FYI: Functions that operate on certain kinds of objects are called methods (. append () is a method of
List). We have been using many methods since the beginning of the course.

d. What are some additional methods that we have been using in this course so far?

For lists:

For strings:




POGIL — Activity 25b: Question 2

2. Examine the following code below, that creates a new class in interactive python:

1

oo WN

>>>
>>>
>>>
[2,
>>>

0 >>> class EvensList:

“umrm A new class to store data “"”

el = EvensList()
el.items = [2,4]
el.items

4]

el.append(6)

What type of object is e1? How do you know?

What value does el . i tems hold after line 3?

What type of object is el . i tems? How do you know?

What attributes does EvensList have?

What does the programmer hope will happen after line 6?

This code will generate the following error, “AttributeError: ‘EvensList’
object has no attribute ‘append’,” why do you think that is?



POGIL — Activity 25b: Question 3

3. Observe what happens when we enter the following lines, continuing from those above:

8 >>> def append(evenlst, item):
9 ... evenlst.items.append(item)

10 >>> append(el, 6)
11 el.items
12 [2, 4, 6]

a. How does line 10 in this example differ from line 1 in question 1?

b. Isappend(..) defined on lines 8 & 9 a method or a function? Why?

| FYI: User-defined object instances can be passed to functions just like built-in object instances.

c. How does the value of el . i tems change in line 10?

d. Write some lines of python to adjust the append function so that it only adds items to

evenlst that are even numbers:

def append(evenlst, item):



POGIL — Activity 25b: Question 4

4. Examine the following code below, that creates a new class in interactive python:

0 >>> class EvensList:
1 ... def append(self, item):
2 saa self.items.append(item)

>>> el = EvensList()
>>> el.items = [6,4]
>>> el.append(3)

>>> el.items

[6, 4, 2]

0o Wb

a. What value does el . items hold after line 6?

b. How does the call to append differ in line 6 in this example, versus line 10 in question 3?

c. How does append’ s function header differ in line 1 above versus line 8 in question 3?

d. How does append’ s function definition differ in line 2 above versus line 9 in question 3?

| FYI: In user-defined types, we refer to the values stored in that instance through the keyword, self.

e. If we were to add a line 3 to the append method that was print (self.items) what

might be printed and on after what line?

f . Modify the append method for EvensList to only append integers that are even numbers:



POGIL — Activity 25b: Question 5

5. Examine the following code below, that creates a different version of EvensList, but as a script:
EvenslList.py

0 class EvensList:

1 def _ init (self, itemList):
2 self. items = itemList

3 def append(self, item):

4 self. items.append(item)

5 1E name ==  WMain ¢

6 betterEL = EvensList([88, 12, 4])
7 print (betterEL. items)

8 # prints [88, 12, 4]

9 betterEL. append(8)

10 print (betterEL. items)

a. What two lines did we add to this definition of EvensList that we did not see in the

betterEL. _items.append(8)

previous question?

b. How does our creation of the bet terEL variable on line 6 differ in this example from
creating el in the previous example?

betterEL.append(8)

FYI: The _init method is implicitly called when you instantiate a new object. It is very useful for

setting up an object with an initial state or initial values.
C. What’s stored in betterEL. items when line 7 is printed?

d. What’s stored in betterEL. items after line 9 is executed?



The underscore in python

* In python, objects that start with an underscore are “hidden”

* They’re not really hidden, but it’s a convention to imply that they shouldn’t be
accessed publicly

* If you’re using an object name that starts with an underscore outside of a
class definition, you should feel GUILTY
* This goes for double-underscore __<name>__ objects in python too!

* Using a variable name that is an underscore, means you don’t plan to
ever use that variable:

* for in range (5) :

print ("Hello repeat!”)




YOU SHOULD COMPLETE THE REST OF
ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!



?UESHNS‘? P
‘) -

> 7




Leftover Slides



POGIL Activity 24b — Classes: Slots

* Look at Python Activity 24b, Questions 1-4
* Find a partner and talk through the questions together



POGIL — Activity 24b: Question 1

1.

Examine the following code from interactive python below using a Flower data structure.

1

O Wi

6

0 >>> class Flower:

>>>
>>>
>>>
3

>>>

7 AttributeError: ‘Flower’ object has no attribute
‘bloomTime’

Interactive Python

\\rr

w77 A new class representing flowers
iris = Flower()
iris.petals = 3

iris.petals

iris.bloomTime

What type of object is iris? How do you know?

On which line is i ris.petals on the lefthand side of an assignment operator?

What value is assigned?

On which line is iris.bloomTime on the lefthand side of an assignment operator?

Why might iris.bloomTime on line 7 throw an error?

Write a line of python to enter before line 6, to fix the error:



POGIL — Activity 24b: Question 2

2. Examine the following code below, which continues from the previous example:

8 >>> daisy = Flower()

9 >>> daisy.nonsense = ‘wut WUT’
10 >>> daisy.nonsense

11 ‘wut WUT’

a. What differs between our asisgnment of dai sy in this example, and iris in the earlier

example?

b. Where do we assign a value to daisy.petals in this example?

c. Where do we assign a value to daisy.nonsense in this example? What’s its value?

d. Is nonsense a meaninful attribute for objects of type Flower?



POGIL —

3.

Activity 24b: Question 3

Examine the following code below, that overwrites previous versions of Flower:
Interactive Python

0 >>> class Flower:
coe __slots_ = [‘petals’]

[

2 >>> rose = Flower()

3 >>> rose.petals = 5

4 >>> rose.nonsense = ‘May’

5 AttributeError: ‘Flower object has no attribute
‘nonsense’

How does the assignment of rose . petals differ from the assignment of iris.petals in

question 1?

How does the assignment of rose . nonsense differ from the assignment of

daisy.nonsense in the previous question?

What happens with line 5 in this example that didn’t occur in the previous question?

How does the definition of the F1ower class differ in this example, from the definition of

Flower used in questions 1-2?

FYI: The _slots _ keyword defines a list of attributes for a class object. No additional attributes can be
added to an instance, unless their name appears in the  slots  list.

d.

What might happen if we modify line 1 tobe slots = [‘petals’,’nonsense’]

and then ran the code?



POGIL — Activity 24b: Question 4

4. Examine the following code below, which continues from the previous example:

6 >>> violet = Flower()
7 >>> violet.petals = 5
8 >>> violet.petals

9 5

10 rose.petals + violet.petals
11 10

a. Whatis storedin violet.petals?

b. What is happening on line 10?



POGIL — Activity 24b: Question 4

5. Examine the following code below, which continues from the previous example:

12 >>> def avgPetals(flwrList):

13 ... total = 0

14 ... for flwr in flwrList:

15 ... total += flwr.petals

16 ... return total / len(flwrList)

a. What is an example value for f1wrList?

b. What would the output for your example value in (a) result in?

c. What does avgPetals do?

d. Write a function, droughtPetals, that accepts a Flower object as a parameter and an

integer days, and removes one petal from the flower for each days of drought:



Class Syntax

We’'re defining a new type of object

class Book: The name of the new type
slots = [' title’] Onlyattribute for Book s ‘_title’

der _ 1nit__ (selr): |[nitializeris implicitly called when we create a new Book

self. title = V'
def addTitle (self, txt):
self. title += txt Object attributes are always accessed through self.

>>> b = Book() Makesa new book, implicitly calls __init_ ()

>>> b. _title rinit() weren't called, this would throw an error!

Methods must always be passed self as paramete

\7/

, Even though method definition
>>>b.addTitle ("Harry Potter”)

has self, method call does not!

>>> b. title _title starts with underscore, so we shouldn’t use
‘Harry Potter’ There’s something else we should use instead...




Generators

def countTo(n):
1 =1

while i1 <= n:

yield 1

i+= 1
g = countTo(3) print(next(g)) 3
print(next(g)) 1 print(next(g))

print (next(qg)) 2 ERROR St0pIteration§



Generators

def countRet(n):

def countTo(n):

i=1 1 =1
while i <= n: while i1 <= n:
vield i return 1
i+= 1 i+= 1
ig = countTo(3) print (countRet(5)) 1
prlnt(next(g)) 1 print (countRet (5)) 1

prlnt(next(g)) 2 print (countRet (5)) 1



Can have multiple return statements

def countRet(n): def multRet (num):
1 =1 if num <= O0:
while i <= n: return num

) return i else:
i+= 1 B return “+++"

' Once we reach ‘return’ "+++” is only returned if
- we never get past it! “return num” is never
i is never incremented! reached, i.e., when num

is greater than 0.



