
On your way in…

Pick-up:
1. HW03, graded
2. POGIL Activity 21: Generators

Note:
Lab 5 will be released today. It’s another partners lab.

CS COLLOQUIUM: nate derbinsky

ADVENTURES IN HYBRID

ARCHITECTURES FOR INTELLIGENT

SYSTEMS

Today at 2:35pm in Wege (TCL123)
There’s snacks!

Midterm Exam is Thursday, March 12

• TPL 203: 5:45pm-7:45pm OR 8-10pm
• Exam Review Session: 3/9 at 7-8:30pm in TPL 203.

• Closed book exam
• Review your homeworks! POGILs! Slides! Labs!
• Next week’s lab will be less intense

Spring 2020

Welcome to CS 134!
Introduction to Computer Science

Iris Howley

-Generators & Plotting-

HW4 #2 Typo

• collegeInfo = [“Williams College”, 1793, “MA”]
• colName = collegeInfo[0]
• foundYear = collegeInfo[1]
• colState = collegeInfo[2]

TODAY’S LESSON
Plotting Data

(Gathering data & producing graphs with it!)

matplotlib

• A plotting module: from matplotlib import pyplot as plt

• Needs a list of x-values and a list of y-values
§ xLabels = []
§ yValues = []

• Number of x-values is useful for spacing:
§ positions =

list(range(len(xLabels)))

• Then, we plot!

matplotlib

• plt.figure()
• plt.bar(positions, yValues)
• plt.xticks(positions, xLabels, rotation=90)
• plt.title(‘plot title goes here’)
• plt.xlabel(‘x-axis label goes here’)
• plt.ylabel(‘put your y-axis label here’)
• plt.tight_layout()
• plt.savefig(‘filename.pdf’)
• plt.show()

To save plot to a file!

plt.bar determines what kind of plot
plt.figure makes our figure

xticks helps w X label positions

More matplotlib features in their documentation: http://matplotlib.org/users/pyplot_tutorial.html

Ensures all our labels, etc fit

http://matplotlib.org/users/pyplot_tutorial.html

An Example

• Read in the Harry Potter Data
• Make a list of dictionaries [

§ {NAME: <character name>, TOTAL:<tot times spoken>, WORDS: <list words said>}
§ {NAME: ‘Harry’, TOTAL:685, WORDS: […,’magic’,…’wizard’,…]}

• Go through list of dictionaries, make a list of just character names and a list
of just total times spoken
• Make a bar chart with X being character and Y being number of times

spoken

• …How would we sort this?

See Example Code on Website

TODAY’S LESSON
Generators

(A memory efficient way of generating on-demand values)

POGIL Activity 21 - Generators

• Look at Python Activity 21, Question 1-4 & 6 (5 on your own)
• Find a partner and talk through the questions together

POGIL – Activity 21: Question 1

What another way we can write this while loop?

POGIL – Activity 21: Question 2

Generators Syntax

def countEvens(n):
i = 0
while i < n:

yield i
i+= 2

g = countEvens(3)
print(next(g))
next(g)

yield keyword, is like return, but lets you return
to the function and continue where you left off!

Variable to store our generator object
Function that yields, is a generator object.

This is where we’ll pick up again 2nd time we call next on the
generator

Pass 3 as an argument, will be called n in function
How we ask the generator to yield the next
item in the sequence

Returns to countEvens and starts at the i+=2 line

POGIL – Activity 21: Question 3

POGIL – Activity 21: Question 4

POGIL – Activity 21: Question 5

POGIL – Activity 21: Question 6

“the golden ratio”

YOU SHOULD COMPLETE THE REST OF

ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!

TODAY’S LESSON
Generators

(A memory efficient way of generating on-demand values)

Generators

def countTo(n):
i = 1
while i <= n:

yield i
i+= 1

g = countTo(3)
print(next(g)) 1
print(next(g)) 2

print(next(g)) 3
print(next(g))

ERROR StopIteration

Generators

def countTo(n):
i = 1
while i <= n:

yield i
i+= 1

print(countRet(5)) 1
print(countRet(5)) 1
print(countRet(5)) 1

def countRet(n):
i = 1
while i <= n:

return i
i+= 1

g = countTo(3)
print(next(g)) 1
print(next(g)) 2

Can have multiple return statements

def multRet(num):
if num <= 0:

return num
else:

return “+++”

def countRet(n):
i = 1
while i <= n:

return i
i+= 1

Once we reach ‘return’
we never get past it!
i is never incremented!

”+++” is only returned if
“return num” is never
reached, i.e., when num
is greater than 0.

Another example

def isPrime(n):

"""Returns True iff n is prime."""

if n <= 2:

return n == 2

g = primes()

f = next(g)

while f*f <= n:

if (n%f) == 0:

return False

f = next(g)

return True

def primes():

"""Generates all primes."""

p = 2

while True:

if isPrime(p):

yield(p)

p += 1

for i in primes():
print(i)

questions?
? ?

?? ?
?

??

??

Leftover Slides

