On your way In...

Pick-up:
1. HWO04, due Monday
2. POGIL Activity 30: Lambda

Midterm Exam is Thursday, March 12

 TPL 203

* 5:45pm-7:45pm OR 8-10pm

e Exam Review Session: 3/9 at 6-8pm in TPL 203.
* Closed book exam

* Review your homeworks! POGILs! Slides! Labs!

* Next week’s lab will be less intense

Midterm Exam is Thursday, March 12

Topic Coverage

Tentative Schedule of Topics
LAB Wednesday

— 1. Hello, world! (TP1)
. I. PYTHON AND 3. Functions (TP3 Winter Carnival
4. Conditions (TP5-6) | II. PROCEDURE 5. Iteration (TP7) 6. LlStS (TP10)

7. Strings (TP8-9) ITI. TooLBOX BUILDING | 8. Mutability, Tuples (TP12)
IV. FacuLTy TRIVIA 11. Plotting Data . Generators
Viar. 9 13. lterators V.. PRESENTING DATA 14. Classes (TP15-17 15. n-grams

Mar. 16 16. Special Methods V1. GENERATORS 17. Operators 18. Slack

M. 22&29 || Spring Break Spring Break Spring Break Spring Break

Apr. 6 19. Images VII. IMAGES 20. Slack 21. Multiple Classes
Apr. 13 22. Recursion VII. MuLTIiPLE CLASSES | 23. Graphical Recursion 24. Linked List I
Apr. 20 25. Linked List II. VIII. RECURSION 26. Binary Trees 27. Tree Maps

Apr. 27 * Slack IX. RECURSIVE TREES 28. Object Persistence 29. Scope

May 4 30. Iterative Sorting X. PrROJECT 31. Recursive Sorting 32. Search

May 11 33. Special Topics X. PROJECT (CONT.) 34. Special Topics 35. Evaluations

Midterm Exam is Thursday, March 12

Topic Coverage

e Homework 1: Expressions & Functions, return & print

* Homework 2: booleans & loops over sequences, simplifying
conditionals, list indexing

* Homework 3: strings & mutability
 Homework 4: Tuples, Dict (get), list comprehension, lambda sorting

* From labs:
* Writing functions, File reading; Strip, split; Sorting, strings; Len; Finding majk
Counters in loops; Doctests, _all _, modules/scripts, if o
__name__ == main__’

~
* Pretty much everything up to and including Lab 4 & Homework

Welcome to CS 134!

Introduction to Computer Science ()

(0 0) /

-Lambda- @@) \
\ /

A

Iris Howley

Spring 2020

Useful Tuples

How to swap?

>>> first = 'harry'
>>> second = 'potter'
>>> tmp = first

>>> first = second
>>> second=tmp

>>> first

>>> second
"harry'

* With Tuples:
>>> first =

>>> second
>>> first,
>>> first
'potter'
>>> second

'"harry'

'"harry'

second

'potter'

second,

first

LJSGfU‘11Jph35 >>> name = ['harry',6 'james',6 'potter']

Storing list values?

>>> first = name[0]
>>> second = name[1]
>>> third = name[2]
>>> first

"harry'

>>> second

'James'

>>> third

'potter'

* With Tuples:

>>> filrst,second, third

>>> first
'"harry'
>>> second
'James'
>>> third
'potter'

name

Sorting We’ve Seen Before

°* object.sort ()
* Sorts object in-place (destroys original ordering)

* Only makes sense for mutable objects, like a list
* myString.sort () does NOT make sense, because strings are immutable

°* sorted (object)
* Returns a copy of object, sorted

* We need to tie it to a balloon!
* sList = sorted(object)

Sorting We’ve Seen Before

°* object.reverse ()

* Reverse-sorts object in-place (destroys original ordering)

* Only makes sense for mutable objects, like a list
* myString.reverse () does NOT make sense, because strings are immutable

Any guesses about the

* sorted(object, reverse=True) default value of reverse?

* Returns a copy of object, reverse-sorted
* We need to tie it to a balloon! What happens when you

* rslist = sorted(object, reverse=True) Ca" SOI'tEd WlthOUt
defining reverse?
reverse=False

TODAY'S LESSON

Sorting with Lambda

(Convenient ways to sort objects in customized ways)

POGIL Activity 23 - Lambda

* Look at Python Activity 23, Question 1-5
* Find a partner and talk through the questions together

PLEASE NOTE, THIS POGIL IS EXTRA FRESH OFF THE

PRESSES AND MY HAVE SOME ERRORS
(Let me know if something seems off) ‘; "”
F i}

POGIL — Activity 23: Question 1

0 >>> ranks = [[‘Smith’,18],[‘Williams’,7],[‘Amherst’,9]]
1 >>> sorted(ranks)
2 [[*‘Amherst’,9],[‘Smith,18],[‘Williams’,7]]

THIS IS NOT THE DESIRED ORDERING!

a. What index within the ranks list does [‘Williams’, 7] start at?
b. What index within the ranks list does [‘Williams’, 7] end at?
C. What index within the ranks list do you think the programmer wants [‘Williams’, 7]

to be located at?

d. Why didn’tthe [‘Williams’, 7] element end up in that location?:

e. What might python be sorting the elements of ranks based on?:

f. Write a few lines of code to sort the list according to the college’s rank:

POGIL — Activity 23: Question 2

The following code includes a function on the left and the function’s output in interactive python

is shown on the right: >>> byRank(['Williams',7])
3 def (pair): 7
4 return pair[1] {>>> byRank(('Smith',18))
_ A :18

a. What two parameter Values did we pass to byRank(. .) ? § ..

b. Write another function call for byRank (. .) with a different, valid parameter value:

c. What will the byRank function call you wrote in (b) return?

d. What does the byRank function do?

POGIL — Activity 23: Question 3

5 >>> ranks = [[‘Smith’,18],[‘Williams’,7],[‘Amherst’,9]]
6 >>> sorted(ranks, key=byRank)
7 [[‘Williams’,7],[’Amherst’,9],[‘Smith’,18]]

a. How does line 6 above differ from line 1 from the first question?

b. How does the output on lines 7 and 2 differ?

C. What might byRank on line 6 be referring to?

d. What does the key variable on line 6 do?

e. If we reused the sorted (. .) call from line 6 above on the following list, what would

you expect the output to be? [[‘pixel’, 3], [‘annie’, 0], [‘tally’,2]]

POGIL — Activity 23: Question 4

8 >>> ranks = [[“Smith’,18],[‘Williams’,7],[‘Amherst’,9]]
9 >>> sorted(ranks, key=lambda pair:pair[l])
10 [[‘Williams’,7],[‘Amherst’,9],[‘Smith’,18]]

a. Examine the text that follows the 1ambda keyword on line 9 above, and the text of the
byRank function in question 2. How do these differ?

b. How does the output on lines 10 and 7 differ?

C. What might the key=1lambda pair:pair[1l]on line 9 be doing?

d. If we changed line 9 to be sorted (ranks, key=lambda pair:pair[0])
what might the output be?

€. The code in lines 8-9 above accomplishes the same tasks as the code in lines 3-6. Why

might we use one approach over another?

Lambda Syntax

Denotes an unnamed function, we can’t call it explicitly!

e lambda XxX: X Atransformation, typically using the parameter we passed

The variable that refers to the value we’re being passed (like a parameter)

°*sglList=sorted(thelList, key=lambda x: x*x)

key is an optional named parameter of sorted(.

* What does sgList contain?

Lambda Syntax

* What happens when two values from lambda function are equal?
* Can also specify secondary sorting mechanism!

* sortedCharacters = sorted
(thelList, key=lambda x:}(x[1], x[2]))

* Specifies what’s in x[1] as primary sort key, and if there’s equals, look
at what’s in x[2]

- POGIL — Activity 23: Question 5

Examine the following example code:| 0 >>> def birthYear (dogDictionary):
1 ... return 2020-dogDictionary['age']

2 >>> dogs = [{‘name’ :'pixel',’age’:2}]
3 >>> dogs.append({ ‘name’ :"annie’,"age’ :5})
4 >>> dogs.append({‘name’ :’linus’,’age’:1})
5 >>> dogs
6 [{'name': 'pixel', 'age': 2}, {'name':'annie',6K 'age': 5},
{'name': 'linus', 'age': 1}]
7 >>> sorted(dogs, key=birthYear)
8 [{'name': 'annie', 'age': 5}, {'name':'pixel',6 'age': 2},
{'name': 'linus', 'age': 1}]
What type of object is the value returned on line 6? On line 8? & Where is the birth¥ear function being called?
h. What is the first value dogDictionary will have when this code is run?
How do lines 6 and lines 8 differ?
1. How does the birthYear function access the dogs’ age in years?
How is the data on line 8 being sorted? Based on what values?
g. Write some code to use a lambda function to sort the dictionaries based on age, rather

than the birthYear function.

What does the birthYear function do?

YOU SHOULD COMPLETE THE REST OF
ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!

TODAY'S LESSON

Sorting with Lambda

(Convenient ways to sort objects in customized ways)

An Example

*>>> ranks = [('Amherst', 18), ('Williams', 7), ('Middlebury', 9)]
°*>>> ranks.sort()

* >>> ranks

°[('Amherst’', 18), ('Middlebury', 9), ('Williams', 7)]

This isn’t what we want!

Customized Sorting

* What should we do?

Iterate through, find highest, insert at front of new list
Or maybe...use sorted() and its key parameter!

sorted(iterable[, key]|[, reverse])

Customized Sorting

*sorted(iterable|[, key][, reverse])

* key should be a function that can be used for sort

comparison
ranks = [('Amherst', 18), ('Williams', 7), ('Middlebury’', 9)]

* def byRank(pair):

return pair[1l]

*rs = sorted(ranks, key=byRank)

Sorting Tools

* def byRank is asimple, one-expression function with just this
one purpose!

* ...lambda functions (i.e. anonymous functions)

*rl = sorted(ranks, key=lambda pair:pair[1l])
* Compare to:

*rs = sorted(ranks, key=byRank)

* def byRank(pair):

return pair[1l]

Lambda Functions (Another Example)

* def mult(a,b): * [s comparable to:
return a*b * m = lambda a,b: a*b

* p = mult(5,6) * p=m(5,6)

Lambda Functions (Another Example)

* Maybe we want to always
transform a function’s output in a
couple different ways:

*def somefunc(n):
return lambda a : a*n

*tripled= somefunc(3)

* doubled = somefunc(2)
*print(tripled(5)) =2 15

* print (doubled(5)) =2 10

Lambda Functions

* Historical significance to the field of computer science
* Introduced by Alonzo Church in the 1930s

* Thought they were writing about mathematical logic, ended up
defining computation
e ~1960s, connected lambda to programming languages
e Popular in linguistics, too
e See ‘Montague Grammar’
* Ties into Turing machines (~1935)
e Defines an abstract machine
* Proves fundamental limitations on the power of mechanical computation

EVERYTHING IN PYTHON
IS AN OBJECT

(including functions) . |

?UESHNS‘? P
‘) -

> 7

Leftover Slides

Functions as Objects
*dogs = ['pixel', 'tally', 'linus', 'wally']

*def justDog(d):
return d + " dog"

*def printDog(dList, strFunction):
for d in dList:
print (strFunction(d)) pixel dog
tally dog
linus dog

*>>> printDog(dogs, justDog) ., 00

