
On your way in…

Hand-in:
1. Homework 3s due today
• 2 piles: SU Boxes < 1700 and SU Boxes >= 1700

Pick-up:
1. POGIL Activity 20: Dictionaries

this week’s lab is a partners lab!

• Your partner must be in your lab section.

• Partner sign-up document:

http://www.bit.ly/s20partners

Spring 2020

Welcome to CS 134!
Introduction to Computer Science

Iris Howley

-Sets & Dictionaries-

Midterm Exam is Thursday, March 12

• TPL 203
• 5:45pm-7:45pm OR 8-10pm

• Closed book exam
• Review your homeworks! POGILs! Slides! Labs!

• Next week’s lab will be less intense

• We’ll talk about topic coverage on Wednesday

Some Useful List Functions

lst = [1,2,’three’]
lst.append(4.0)

lst [1,2,’three’,4.0]

lst.extend([5,6])
lst [1,2,’three’,4.0,5,6]

lst.pop()
§ 6

lst [1,2,’three’,4.0,5]

l.remove(4.0)
lst [1,2,’three’, 5]

‘pydoc3 list’ has a lot more!

Adds one object to end of list

Adds individual elements from sequence to end of list

Removes & returns last element in list

Finds & removes given object from list

Some Useful List Functions

lst = [1,2,’three’,1]
lst.count(1)

§ 2

lst.index(‘three’)
2

lst.insert(3, 4.0)
lst [1,2,’three’,4.0,1]

lst.reverse()
lst [1,4.0,’three’,2,1]

‘pydoc3 list’ has a lot more!

Counts the number of occurrences of an object in the list

Returns the index of an object in the list

Inserts an object at a given index: insert(index, obj)

Destructively reverses the list

TODAY’S LESSON
Sets

(a mutable data structure that stores unique elements)

Sets

s =
{5,5,5,7,7,7,2,2,2,2,2,2,2,2,2}

s
§{2, 5, 7}
list(s)

§[2, 5, 7]
tuple(s)

§(2, 5, 7)

Order isn’t preserved!

What happened?
No repeats!

Using Sets

s = {4,3,3,3,9,1,1}
s

§ {9, 3, 4, 1}

s[0]
§ TypeError: 'set' object does not support indexing

s.add(2019)

s
§ {1, 3, 4, 2019, 9}

‘pydoc3 set’

Immutable Sets?

• Sets are mutable, so if we want an immutable version:

• s = {5,5,5,7,7,7,2,2,2,2,2,2,2,2,2}
• fs = frozenset(s)

Counting Vocabularies

• with open(filename) as f:
§wordlist = []
§for line in f:
oline = line.strip()
owordlist.extend(line.split())

§vocab = set(wordlist)
§len(vocab)

s = “hello there folks!”
s.split(“ “) à [‘hello’,’there’,’folks’]

Counting Vocabularies

• Just because you can’t myset[0], doesn’t mean you can’t iterate
over elements in a set!

• for item in vocab:
§ if item in [‘wizard’, ‘harry’]

oprint(item)

Set Functions

• s = {1,2,3,4}
• s2 = {1,2}
• s2.issubset(s) à True
• s.issubset(s2) à False
• s.issuperset(s2) à True
• s2.add(99)
• s2.issubset(s) à False

• s.union(s2)
§ {1,2,3,4,99}

• s.intersection(s2)
§ {1,2}

• s.difference(s2)
§ {3,4}

• s2.difference(s)
§ {99}

‘pydoc3 set’

TODAY’S LESSON
Dictionaries

(a data structure with convenient indexing, no iteration needed!)

POGIL Activity 20- Dictionaries

• Stores data that can be accessed via meaningful indices

• Look at Python Activity 20, Question 1-5
• Find a partner and talk through the questions together

POGIL – Activity 20: Question 1

‘pixel’

‘iris’

print(dog2owner[1][1])

print(dog2owner[2][0])

THERE’S A MUCH EASIER WAY TO STORE/ACCESS THIS TYPE OF DATA!

POGIL – Activity 20: Question 2

It accesses the value stored under ‘wally’

An index, it looks similar to list indexing, but not an int!

key = ‘pixel’
print(“{}’s dog is {}”.format(d[key], key))

Dictionary Syntax

• aDiction = {}

• aDiction = {‘key’: ‘value’, 2: [var1, var2]}

• print(aDiction[‘key’])
• ‘value’

Make an empty dictionary w {} or dict()

Curly brackets (with colon indices) mean dictionary

Can use key values as index

Maps a key on the left-hand side to a value on the right-hand side

Dictionary Keys

• d[[‘bill l’,’bill j’] = ‘williams college’
• ERROR

• d[(‘bill l’,’bill j’)] = ‘williams college’
• d
• {('bill l', 'bill j'): 'williams college’}

What’s the difference?
Dictionary keys must be immutable types

int, float, string, bool, tuple, frozenset

POGIL – Activity 20: Question 3

It add a ‘linus’ key mapped to ‘jeannie’ value

We can modify it!

d[‘annie’] = ‘bill’

POGIL – Activity 20: Question 4

0

1

d = dict()
d[‘m’] = 3
d[’d’] = 2
d[’y’] = 2020

POGIL – Activity 20: Question 5

{‘colleges’:’amherst’}

Dictionaries can only hold one key, any repeats override!

POGIL – Activity 20: Question 5

Dictionary .get(object, missingReturnObject) is convenient here!

Dictionary .get()

• aDiction = {‘key’: ‘value’, 2: ‘hello’}

• aDiction.get(2, -1)
• ‘hello’

• aDiction.get(3333, -1)
• -1

Keys

.Get function for dictionaries

Value to return if the key isn’t there
Key for which you want a value

Key exists, so return the value

Key doesn’t exist, so return the value we opted for

SUPER handy when the values are lists/sequences!
Make missing return value []

POGIL – Activity 20: Question 6

POGIL – Activity 20: Question7

POGIL – Activity 20: Question 8

POGIL – Activity 20: Question 8

POGIL – Activity 20: Question 9

YOU SHOULD COMPLETE THE REST OF

ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!

Lists of Lists

• dog2owner =
[[‘pixel’,‘iris’],[‘wally’,’steve’],[‘tally’,’duane’]]

• What index is the name of Tally’s owner at within dog2owner?
§ Just the owner’s name!

Take a minute to discuss with a partner

Lists of Lists

• dog2owner =
[[‘pixel’,‘iris’],[‘wally’,’steve’],[‘tally’,’duane’]]
• What index is the name of Tally’s owner at within dog2owner?

1. What is the index of the element of dog2owner that we want?
§ dog2owner[0] à [‘pixel’, ‘iris’]
§ dog2owner[1] à [‘wally’, ‘steve’]
§ dog2owner[2] à [‘tally’, ‘duane’]

2. What is the index of the element within that element, that we want?
§ [‘tally’, ‘duane’][0] à ‘tally’
§ [‘tally’, ‘duane’][1] à ‘duane’ dog2owner[2][1]

• l = [’pixel', ’wally', ’tally’]
• l[1]

§‘wally’

• d =
{'pix':'iris','wally':'steve','tally':'duane'}

• d[‘tally’]
§‘duane’

• d =
{'pix':'iris','wally':'steve','tally':'duane'}

• d[‘tally’]
§‘duane’

• d[‘pix’]
§‘iris’

• d[‘wally’]
§‘steve’

Dictionaries
Key Value

Mapping from Key to Value

Iterating Over Dictionaries

• for key in d:
§ print(“{}’s dog is {}“.format(d[key],key))

§ When key is ‘pix’:
oiris’s dog is pix d[key] is ‘iris’

§ When key is ‘wally’:
osteve’s dog is wally d[key] is ‘steve’

§ When key is ‘tally’:
oduane’s dog is tally d[key] is ‘duane’

• d =
{'pix':'iris','wally':'steve','tally':'duane'}

Dictionary Keys

• d = {1:’hello’, 2:2019}
§ Keys can be other types, so can values

• d[‘good’] = [‘bye‘] * 3
§ We can add values mapped to a specified key
§ {1: 'hello', 2: 2019, 'good': ['bye’,’bye’,’bye’]}

Dictionary Keys

• d = {‘bill’: ‘Dartmouth’}
• d[‘bill’] = ‘Stony Brook U’
• d

§ {‘bill’: ‘Stony Brook U’}
§ Only one key with same value! Overwrites!

• d[‘bill’] = [‘Dartmouth’, ‘Stony Brook U’]
§ …But lists can also be dictionary values

Prof. Bill Lenhart

Prof. Bill Jannen

Dictionary Keys

• d[[‘bill l’,’bill j’]] = ‘williams college’
§ERROR

• d[(‘bill l’,’bill j’)] = ‘williams college’
§ d

o{('bill l', 'bill j'): 'williams college’}

What’s the difference?
Dictionary keys must be immutable types

int, float, string, bool, tuple, frozenset

Detecting if Something in a Dictionary
• d ={‘dogs’:5, ’cats’:1}
• ‘cats’ in d

§ True
• 5 in d

§ False

• l = [’pix', ’wally', ’tally’]

• if ‘wally’ in l:
§ print(“Found Wally!”)

5 in d.values()
True

Dictionaries

• d = dict()
• d = {4:101, 2:760, 9: 422}
• list(d)

§[4, 2, 9]
• list(d.values())

§[101, 760, 422]

•list(d.items())
§[(4,101), (2,760), (9,422)]

Remember ‘pydoc3 dict’ for more functions!

questions?
? ?

?? ?
?

??

??

Leftover Slides

Sets & Frozensets

• s = {4,3,3,3,9,1,1}
• s

§ {9, 3, 4, 1}
• s[0]

§ TypeError: 'set' object
does not support indexing

• s.add(2019)
• s

§ {1, 3, 4, 2019, 9}

• fs = frozenset(s)
• fs

§ frozenset({1,3,4,2019,9})

• fs[0]
§ TypeError: 'frozenset' object
does not support indexing

• fs.add(2019)
§ AttributeError: 'frozenset' object
has no attribute 'add'

‘pydoc3 set’

Why Lists of Lists?

Games

Images

Mathematics

HASHING

Finding dictionary values quickly

Dictionary Keys

• d[[‘bill l’,’bill j’]] = ‘williams college’
§ERROR

• d[(‘bill l’,’bill j’)] = ‘williams college’
§ d

o{('bill l', 'bill j'): 'williams college’}

What’s the difference?
Dictionary keys must be immutable types

int, float, string, bool, tuple, frozenset

Dictionary Keys

Why?

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset

Mutable Types as Dictionary Keys

• Lists are mutable
• When you append() to a list, it changes that list object
• If you used a list object as a key in a dictionary, you wouldn’t be able

to find it again, after it’s been changed
mylist = [‘a’, ’b’]
mydict = dict()
mydict[mylist] = ‘throws an error’
mylist.append(‘c’)
print(mydict[mylist])
Now mylist is no longer findable in the dict!

We’re going to see why!

Dictionary Keys

• Dictionaries index their items by a hash
• A hash is an fixed sized integer that identifies a particular value.
• Each value needs to have its own hash

§ For the same value you will get the same hash even if it's not the same object.

Why not just index items based on their value?

Hashing

Hashing FIND:

Hashing

Hashing FIND:

Hashing FIND:

Hashing

• We could organize all words in memory by the letter they start with…

• But words that start with ‘A’ could be numerous
• Compared to words that start with ‘Z’

§ …Sort of like arranging clothes by color

• Hashing is a different way of mapping items to make them easier to
find

Why not just index items based on their value?

Hashing

• Other concerns
§ Bad hashing function for your data, resulting in clustering
§ Running out of space in the pile you’ve assigned
§ Placing shirts in the wrong pile

• Stored in the order that makes it easiest to look them up

hash(o) à o.__hash__()

• s = “hello world”
• t = s + “!”
• hash(s) à 4960501519247167238
• hash(s) à 4960501519247167238
• hash(t) à -8774050965770600213
• hash(t[:-1]) à 4960501519247167238

If the 2 strings are the same, they’ll get the same hash
If the 2 strings are different, they *might* get a different hash.

hash(o) à o.__hash__()

• hash(1) à 1
• hash(2) à 2
• hash(1000000000000000000) à 1000000000000000000
• hash(10000000000000000000) à 776627963145224196

Some hash codes are expensive (million-long tuple)

At some length, it starts treating the numbers like a string
If the hash codes are the same, the values might be the same

Hash Tables

Keys

‘pixel’

‘tally’

‘wally’

‘linus’

Hashes

0

1

2

3

4

Buckets

tally

linus

bananas

everything

pixel cheese
wally carrotsx

How to access mydict[‘wally’]?

Overflow

collision!

What to do
with Wally?

Could re-hash into
new table and

increase #
buckets…

…or…

Immutable Objects

• Have no way to set/change the attributes, without creating a new
object
§ Like int, string, etc.
§ Like the Color class from this week’s lab!
§ __slots__ = []

• Can be used in sets
§ i.e., you cannot have a set of lists

• Can be used as keys for dictionaries
§ If the class has a __hash__() function defined!

Hashing

• Don’t know how it’s computed à Abstraction

• There’s many ways to implement a hash function, here’s a description
of some of them:
§ https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/ha

shfuncs.html

https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/hashfuncs.html

Algorithms

Fibonacci Sequence

• fibo(0) = 0
• fibo(1) = 1
• fibo(n) = fibo(n-1) + fibo(n-2)

§ fibo(4) = fibo(3) + fibo(2)
o = fibo(2) + fibo(1) + fibo(1)+fibo(0)
o = fibo(1)+fibo(0) + 1 + 1 + 0
o = 1 + 0
o = 3

Fibonacci Sequence

• fibo(0) = 1 call of fibo()
• fibo(1) = 1 call
• fibo(2) = 3 calls
• fibo(3) = 5 calls
• fibo(4) = 9 calls
• fibo(5) = 15 calls…

• For each increase in n, the number of function
calls practically doubles

Speeding Up Fibonacci

(Memoization)

global postit
if n in postit:

answer = postit[n]
else:

if n < 2:
answer = n

else:
answer = fibo(n-1) + fibo(n-2)

postit[n] = answer
return answer

