On your way In...

Hand-in:

1. Homework 3s due today
2 piles: SU Boxes < 1700 and SU Boxes >= 1700

Pick-up:
1. POGIL Activity 20: Dictionaries



THIS WEEK'S LAB IS A PARTNERS LAB!

* Partner sign-up document:

\&

http://www.bit.ly/s20partners



Welcome to CS 134!

Introduction to Computer Science ( )

(0 0) /

-Sets & Dictionaries- @@ ) \
\ /

A

Iris Howley

Spring 2020



Midterm Exam is Thursday, March 12

* TPL 203
* 5:45pm-7:45pm OR 8-10pm

* Closed book exam
* Review your homeworks! POGILs! Slides! Labs!

* Next week’s lab will be less intense

* We'll talk about topic coverage on Wednesday




Some Useful List Functions

>>>1st = [1,2, 'three’]

>>>1st.append(4.0) Addsoneobjecttoend of list
>>>] st [1,2, 'three’ ,4.0]

>>1st [1,2, 'three’,4.0,5,6]

>>>1st.pop() Removes & returns last element in list
6
>>>]st [1,2,'three’ ,4.0,5]
>>>].remove(4.0) Finds & removes given object from list
>>>]1st [1,2, 'three’, 5]

>>>1st.extend([5,6]) Addsindividual elements from sequence to end of list i



Some Useful List Functions

>>1st = [1,2, 'three’,1]

>>>1st.count (1) Countsthe number of occurrences of an object in the list

2
>>>1st.index(‘three’)
>>> 2 Returns the index of an object in the list

>>1st [1,2,'three’,4.0,1]

>>>]1st.reverse() Destructively reverses the list i
>>1st [1,4.0, three’,2,1] i



TODAY'S LESSON

Sets

(a mutable data structure that stores unigue elements)




Sets

>>>g =

{5,5,5,7,7,7 2,2,2,2,2,2,2,2}

>>> g What happened?
“{2, 5, 7} No repeats!

>>>1ist (s) Order isn’t preserved!
“[2, 5, 7]

>>>tuple (s)
“(2, 5, 7)



Using Sets

>>>s = {4,3,3,3,9,1,1}
>>> g
{9, 3, 4, 1}
>>>3s[0]
TypeError: 'set' object does not support i1ndexing
>>>35.add (2019)
>>> g
{1, 3, 4, 2019, 9}



Immutable Sets?

Sets are mutable, so if we want an immutable version:

s = {5,5,5,7,7,7,2,2,2,2,2,2,2,2,2}

fs = frozenset(s)



Counting Vocabularies

*with open(filename) as f:
wordlist = []
for line in f:
line = line.strip()
wordlist.extend(line.split())
vocab = set(wordlist)
len(vocab)



Counting Vocabularies

Just because you cant myset [0 ], doesn’t mean you can’t iterate
over elements in a set!

if item 1in [‘wizard’, ‘harry’]

for item in vocab: E
print(item) |



Set Functions

s = {1,2,3,4} *s.union(s2)

s2 = {1,2} {1,2,3,4,99}
s2.issubset(s) =2 True *s.intersection(s2)
s.issubset(s2) > False {1,2}
s.issuperset(s2) > True |~ S-difference(s2)
s2.add(99) {3,4}

s2.issubset(s) =2 False "s2.difference(s)

{99}



TODAY'S LESSON

Dictionaries

(a data structure with convenient indexing, no iteration needed!)




POGIL Activity 20- Dictionaries

Stores data that can be accessed via meaningful indices

Look at Python Activity 20, Question 1-5
Find a partner and talk through the questions together



POGIL — Activity 20: Question 1

dog2owner =
[[ ‘pixel’,‘iris’],[‘wally’, 'steve’],[‘tally’, "duane’]]

a. What’s stored at dog2owner[0][0]? ‘pixel’

b. What’s stored at dog2owner[0][1]? ‘iris’

C. Write a line of code to print the name of Wally’s owner using list indexing:
print(dog2owner[1][1])

d. Write a line of code to access and print the name of Duane’s dog via list indexing:

print(dog2owner[2][0])

THERE'S A MUCH EASIER WAY TO STORE /ACCESS THIS TYPE GISDATA!



POGIL — Activity 20: Question 2

>>> d = {’'pixel’:’'iris’,‘wally’:’'steve’,‘tally’:'duane’}
>>> d[‘wally’]
‘'steve’

a. Whatdoesd[ ‘wally’] do?
It accesses the value stored under ‘wally’

b. Inthe line, d[ ‘wally’ ], what does ‘wally’ represent?
An index, it looks similar to list indexing, but not an int!

c. Write a couple lines of code to print the name of your CS134 instructor and their dog’s name],
accessed via the dictionary, d:

key = ‘pixel’
print(“{}’s dog is {}".format(d[key], key))



Dictionary Syntax

Make an empty dictionaryw {} ordict ()
*aDiction = {}

Curly brackets (with colon indices) mean dictionary

*aDiction = {‘key’: ‘value’, 2: [varl, var2]}

Maps a key on the left-hand side to a value on the right-hand side

Can use key values as index
*print (aDiction] ‘key’ ])
* Yvalue’




Dictionary Keys

ed[[‘b1ll 1’,’'bill j’] = ‘williams college’
* ERROR
*d[(’b1ll 1’,'bill j’)] = ‘williams college’
°d
{('b1ll 1', 'bill j'): 'williams college’}

What’s the difference?

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset




POGIL — Activity 20: Question 3

>>> = {‘pixel’:’iris’,’'wally’:’'steve’, ‘tally’:'duane’}
>>> d[‘linus’] = ‘jeannie’
>>> d

{‘pixel’:’iris’,‘wally’,’'steve’,‘tally’:’duane’, ‘linus’:’jeannie’}

a. What does the lined[ “1linus’] = ‘jeannie’do?

It add a ‘linus’ key mapped to ‘jeannie’ value
b. How does this indicate to us that dictionaries are mutable objects?

We can modify it!

C. Write a line of code to add Bill and his dog, Annie, to our dictionary.

d[‘annie’] = ‘bill’



POGIL — Activity 20: Question 4

>>> = dict() # can also do: d = {}
>>> d
a. If we wrote a third line of code, 1en (d), what would be the output? 0
b. If instead our third line of code was d[ ‘colleges’] = ‘williams’, what would
len(d) return?
1
C. Write some code to create a new dictionary, then place month, day, year keys,
mapped to today’s date values, into the dictionary:
d = dict()
d‘m’] =3
d[’'d’] =2
d[’y’] = 2020




POGIL — Activity 20: Question 5

>>> d = {} # can also do: d = dict()
>>> d[‘colleges’] = ‘williams’
>>> d[‘colleges’] = ‘amherst’

If we wrote a fourth line of code, print (d), what might be the output?

{‘colleges’:"amherst’}

At the end of this code execution, d only has: {“colleges’: ’amherst’} Why might this be?

Dictionaries can only hold one key, any repeats override!



POGIL — Activity 20: Question 5

>>> d = {} # can also do: d = dict()
>>> d[‘colleges’] = ‘williams’
>>> d[‘colleges’] = ‘amherst’
c.  Write a function that checks if d has a value mapped to key. If it doesn’t, create a new list at

key with the given value as its only element. If it does already have the key, append value
to the existing list mapped to key.
def appendDictList(d, key, value):

Dictionary .get (object, missingReturnObject) IS convemieht heres



Dictionary .get ()

Keys
*aDiction = {‘key’: ‘value’, 2: ‘hello’}

.Get function for dictionaries Key for which you want a value
*aDiction.get (2, —1) vaetoreturnifthe key isn’t there

—, I

* ‘hello’ Key exists, so return the value

*aDiction.get (3333, -1)

o =1 Key doesn’t exist, so return the value we opted for

SUPER handy when the values are lists/sequences!
Make missing return value []




POGIL — Activity 20: Question 6

Examine the following example code:

>>> = {‘’colleges’:[’'williams’], ‘univ’:['umass’]}
>>> collist = d.get(‘colleges’, [])

>>> collist

[ ‘williams'’ ]

>>> collist.append(‘amherst’)

>>> d

{‘colleges’:['williams’,’amherst’], ‘univ’:['umass’]}

AU WNNEE O

What is the type of the value mapped to ‘colleges ’at line 0?

S

At line 0, what 1s the value associated with ‘colleges’?

C. How does this value change, between line 0 and line 6?




POGIL — Activity 20: Question/

7. Examine the following example code which continues from the previous question:
7 >>> instlist = d.get(‘inst’, [])

8 >>> instlist

9 [1]

10 >>> instlist.append(‘rpi’)

11 >>> d[‘inst’] = instlist

12 >>> d

13 {‘colleges’:['williams’,’amherst’], ‘univ’:['umass’],
‘inst’:['rpi’]}

a. What is added to our dictionary on line 10? Examine lines 6 and 13 for differences.

b. What does the first parameter passed to the . get (. . ) method on lines 1 & 7 represent?

C. What does the second parameter passed to the .get (. .) method on lines 1 & 7 do?

d. Rewrite your appendDictList (k,v) function from the previous section to use the
.gef

def appen h. How might lines 1-4 and 7-10 change if our values were strings instead of lists?



W

(8))

POGIL — Activity 20: Question 8

>>> = {‘pixel’:’'iris’,‘wally’:’ ','tally’:’ "}
>>> for mykey in d:

.5 s print(“{}’s dog is {}.”.format(d[mykey], mykey)
>>> for k,v in d.items():

« v print(“{}’'s dog is {}: “.format(v, k)

a.  What does the programmer hope the output will be on line 3?

b.  For the first item of our dict, d, what is mykey and what is d[ mykey ]?

key: d[mykey]:
C. What might line 2, for mykey in d: do?

d.  Write some code that will iterate over the items in d and print just the values:



W

(8))

POGIL — Activity 20: Question 8

>>2>

= {‘pixel’:’iris’,‘wally’:’'st ','tally’:’ e’}

>>> for mykey in d:

print(“{}’s dog is {}.”.format(d[mykey], mykey)

>>> for k,v in d.items():

c.

print(“{}’'s dog is {}: “.format(v, k)

The output from lines 4 and 5 are identical to the output from lines 2 and 3. Explain why this

might be the case:

For the lines 4 & 5, what might k and v represent?
k: v
Write some lines of code to iterate through this dictionary of hockey team rankings and print the
team name and current ranking:
ranks = {‘’Amherst’:18, ‘Williams’:7, ‘Middlebury’: 9}




POGIL — Activity 20: Question 9

0 >>> = {‘pixel’:'iris’,‘wally’:"’
1 >>> for val in d.values():

','tally’:’

2 s print (“The value is: “ + val)

a.  What might the line for val in d.values: do?

b.  What would you guess the output of this code to look like?

"}



YOU SHOULD COMPLETE THE REST OF
ALL POGILS OUTSIDE OF CLASS.

BEST DONE WITH A PARTNER OR STUDY GROUP.

CHECK YOUR ANSWERS ON A COMPUTER!



Lists of Lists

* dog2owner =
[[ ‘pixel’,‘iris’],[‘wally’,'steve’],[‘tally’, "duane’]]

* What index is the name of Tally’s owner at within dog2owner?
Just the owner’s name!

Take a minute to discuss with a partner



Lists of Lists

dog2owner =
[[ ‘pixel’,‘iris’],[‘wally’,'steve’],[‘tally’, "duane’]]
What index is the name of Tally’s owner at within dog2owner?

What is the index of the element of dog2owner that we want?
dog2owner[0] =2 [‘pixel’, ‘iris’]
dog2owner[1] =2 [‘wally’, ‘steve’]
dog2owner[2] =2 [‘tally’, ‘duane’]

What is the index of the element within that element, that we want?
[‘tally’, ‘duane’][0] = ‘tally’
[‘tally’, ‘duane’][1] = ‘duane’ dog2owner|[2][1]



1 = ['pixel', 'wally', ‘tally’]
1[1]
‘wally’

d =

{'pix':'iris', 'wally':'steve', 'tally':'duane'}

d[ ‘tally’]
‘duane’



Dictionaries
Key Value

[oix} iris’ [waliy]: 'steve’ [Eatiy]: ‘auane )
>
"d[‘pix’]

ciiris b Mapping from Key to Value

ed[ ‘wally’]
"'steve’ b

*d[ ‘tally’
= duane’




[terating Over Dictionaries
d =
{ g 'y g 'y
for in d:

print(“{}’'s dog 1s {}“.format(

When key is ‘pix’:

iris’'s dog 1is pix dlkey] is ‘iris’
When key is ‘wally’:
steve’s dog is wally d[key] is ‘steve’

When key is ‘tally’:
duane’s dog is tally d[key] is ‘duane’



Dictionary Keys

d = {l:"hello’, 2:2019}
Keys can be other types, so can values

d[ ‘good’] = [‘bye’] * 3
We can add values mapped to a specified key
{l1l: 'hello', 2: 2019, 'good': [ 'bye’,’bye’,’bye’]}



Dictionary Keys

°d = {‘bi1ill’: ‘Dartmouth’} ‘
°d[‘’bi1ll’] = ‘Stony Brook U’ 5
°d

“{’bi1ll’: ‘Stony Brook U’}

“ Only one key with same value! Overwrites!

.

°d[‘’bi1ll’] = [‘Dartmouth’, ‘Stony Brook U’]
= ...But lists can also be dictionary values



Dictionary Keys

d[[‘bill 17,'bill j5'71]
ERROR

d[ (‘bill 17,'bill j5')]
d

‘williams college’

‘williams college’

{('b1ll 1', 'bill j'): 'williams college’}

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset



Detecting it Something in a Dictionary

°d ={’dogs’:5, ’'cats’:1}
*‘cats’ in d
True

*°5 1in d ‘ 5 1in d.values|()
False

True

*1l = ['pix', 'wally', 'tally’]

*1f ‘wally’ in 1:
print (“Found Wally!")




Dictionaries

d = dict()
d = {4:101, 2:760, 9: 422}
list (d)

[4, 2, 9]
list(d.values())

[101, 760, 422]

list(d.items())
[(4,101), (2,760), (9,422)]



QUESTIONS? >
? Pan
? f 7




Leftover Slides



Sets & Frozensets

s = {4,3,3,3,9,1,1}

S

{9,

S[0]
Typekrror:

3,

4,

s.add(2019)

S

{1,

3,

4,

1}

'set’' object
does not support indexing

2019,

9}

fs = frozenset(s)

fs
frozenset({1,3,4,2019,9})
fs[0]

TypeError: 'frozenset' object
does not support indexing

fs.add(2019)

AttributeError: 'frozenset' object
has no attribute 'add'



Why Lists of Lists?

Mathematics



HASHING

Finding dictionary values quickly




Dictionary Keys

d[[‘bill 17,'bill j5'71]
ERROR

d[ (‘bill 17,'bill j5')]
d

‘williams college’

‘williams college’

{('b1ll 1', 'bill j'): 'williams college’}

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset



Dictionary Keys

Dictionary keys must be immutable types
int, float, string, bool, tuple, frozenset

Why?



Mutable Types as Dictionary Keys

Lists are mutable
When you append() to a list, it changes that list object

If you used a list object as a key in a dictionary, you wouldn’t be able
to find it again, after it’s been changed

mylist = [‘a’, 'b’']

mydict = dict()

mydict[mylist] = ‘throws an error’
mylist.append(‘c’)

print (mydict[mylist])

# Now mylist is no longer findable in the dict!



Dictionary Keys

Dictionaries index their items by a hash
A hash is an fixed sized integer that identifies a particular value.

Each value needs to have its own hash
For the same value you will get the same hash even if it's not the same object.












Hashing FIND-







Hashing

* We could organize all words in memory by the letter they start with...

* But words that start with ‘A’ could be numerous

* Compared to words that start with Z’
...Sort of like arranging clothes by color

* Hashing is a different way of mapping items to make them easier to

: . . ' '




Hashing

Other concerns
Bad hashing function for your data, resulting in clustering
Running out of space in the pile you’ve assigned
Placing shirts in the wrong pile

Stored in the order that makes it easiest to look them up



°*°s = “hello world”
't=S+”!"

- hash(s) > 4960501519247167238
* hash(s) -

- hash(t) > -8774050965770600213
- hash(t[:-1]) > 4960501519247167238

If the 2 strings are the same, they’ll get the same hash

4960501519247167238 i
If the 2 strings are different, they *might* get a different hash.



hash(o) 2 0. hash ()

Some hash codes are expensive (million-long tuple)
*hash(l) =2 1
*hash(2) =2 2
* hash(1000000000000000000) -> 1000000000000000000
* hash(10000000000000000000) > 776627963145224196

At some length, it starts treating the numbers like a string
If the hash codes are the same, the values might be the same



Hash Tables How to access mydict[‘wally’]?

Keys Hashes Buckets Overflow
What to do
|_‘pixel 0| | L] with wally?
[ tally’ 1| tally | bananas | |couid e hash into
2‘ T ‘ everything‘ ‘ new table and
‘ ‘wally increase #
3 | || buckets...
| “linus’ 4| pixel | cheese | o Or

collision! wally | carrots |




Immutable Objects

Have no way to set/change the attributes, without creating a new
object

Like int, string, etc.

Like the Color class from this week’s lab!

__slots =[]

Can be used in sets
i.e., you cannot have a set of 1ists

Can be used as keys for dictionaries
If the classhasa hash () function defined!



Hashing

* Don’t know how it’s computed > Abstraction

* There’s many ways to implement a hash function, here’s a description
of some of them:

https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/ha
shfuncs.html



https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/hashfuncs.html

Algorithms




Fibonacci Sequence

fibo(0) =0
fibo(1) =1

fibo(n) = fibo(n-1) + fibo(n-2)

fibo(4) = fibo(3)

= fibo(2) +

= fibo(1)+fibo(0) +
=1+0

=3

+

fibo(1) +

1

+

fibo(2)
fibo(1)+fibo(0)
1+0

21x21

13x13

D

5

K\

8x8

\&




Fibonacci Sequence

fibo(0) = 1 call of fibo()
fibo(1) =1ca
fibo(2) = 3 calls
fibo(3) = 5 calls
fibo(4) =9 calls
fibo(5) = 15 calls...

For each increase in n, the number of function
calls practically doubles

21x21

13x13

D

5

K\

8x8

\&




Speeding Up Fibonacci

(Memoization)

global postit i
if n in postit: i
answer = postit[n] i
else: |
if n < 2: i
answer = n i
else: i
answer = fibo(n-1) + fibo(n-2) i
postit[n] = answer i
return answer



