On your way in...(on the side table)

Pick-up:
1. Homework 01 print-out

2. POGIL Activity #12
POGIL Activity #13
4. Day of the Week Algorithm print-out

o

Welcome to CS 134!

Introduction to Computer Science ()

(0 0) /

-Functions- @@) \
\ /

A

Iris Howley

Spring 2020

N

Housekeeping

Homework 01

Due Monday, February 17 (in less than a week), in class

Some open-ended responses to get you to think about why we do
some of the things we do, in programming

A little bit of code reading
A little bit of code writing

Labs are due Thursday and Friday (at noon)

* If you have Monday lab:
- push your work by Wednesday at 11pm!

* If you have Tuesday lab:
- push your work by Thursday at 11pm!

For every lab!
(unless stated otherwise)

Note:

Homeworks that you turn in are
marked as “Homework”

POGIL activities are in-class, optional
activities that are not turned in.

(but they’re meant to assist in your learning)
(if you are struggling with concepts in the POGIL activity, you'll
encounter the same struggles in other parts of this course)

Have you been following along in the textbook?

Week of | Monday LAB Wednesday Friday

Feb. 3 — —5 1. Hello, world! (TP1)
Feb. 10 2. Expressions (TP2) [. PYTHON AND GITLAB Winter Carnival

Feb. 17 4. Conditions (TP5-6) | II. PROCEDURE 5. Iteration ('T'P7) 6. Lists & Mutability
Feb. 24 7. Strings (TP8-9) ITI. TooLBOX BUILDING | 8. Lists, Tuples (TP10,12) | 9. Files (TP14)

Mar. 2 10. Sets, Dicts, (TP11) | IV. FacuLTy TRIVIA 11. Interpretation 12. Generators

Mar. 9 13. Iterators V. PRESENTING DATA 14. Classes (TP15-17) 15. Classes & n-grams
Mar. 16 16. Special Methods V1. GENERATORS 17. Operators 18. Slack

M. 22&29 || Spring Break Spring Break Spring Break Spring Break

Apr. 6 19. Images VII. IMAGES 20. Slack 21. Multiple Classes
Apr. 13 22. Recursion VII. MuLTIPLE CLASSES | 23. Graphical Recursion 24. Linked List 1
Apr. 20 25. Linked List II. VIII. RECURSION 26. Binary Trees 27. Tree Maps

Apr. 27 * Slack IX. RECURSIVE TREES 28. Object Persistence 29. Scope

May 4 30. Iterative Sorting X. PROJECT 31. Recursive Sorting 32. Search

May 11 33. Special Topics X. PROJECT (CONT.) 34. Special Topics 35. Evaluations

Have you been following along in the textbook?

Resources

The Textbook

Typical workflows

Duane's Incredibly Brief Intro to Unix and Emacs

Python.org Python Tutorial

Python Standard Library

Python Language Reference

VPN Instructions for Accessing GitLab from off-campus

A Thought.

IT IS OKAY TO MAKE MISTAKES.
THIS IS HOW WE LEARN.

IT IS OKAY FOR ME TO MAKE MISTAKES.
| WILL MAKE A LOT OF MISTAKES.

The longer the program, the more errors!
Even for experts!

YOU ARE MY PAIR PROGRAMMING PARTNERS.

...back to the lesson...

TODAY'S LESSON

Programs are useful because they are reusable.

(among other reasons)

3
2.

Process-Oriented Guided-Inquiry Learning
(POGIL)

POGIL

Look at Python Activity 12

Find a partner and talk through question 1 & 2 together
Anything that says ‘enter and execute’, etc. we’ll do as class

When time is up, we’ll execute the code as a class.

Look at POGIL Activity #12 Question 1

Description: This program uses a function to print a message
Function keyword

(nction definition d. What will the output be?
@Mg() : Function header

print("Welcome to Python.")
print("Learn the power of functions!")

e. How to print the last 2 lines twice?
Function definition

def main(): Function header
print("Hello Programmer!")
Function call
printMessage()

Function names

Function call
main()

Look at POGIL Activity #12 Question 2

. -~ o Py B
) T V] A
c CEAE i EBl="

b. What is the purpose of the parameter/argument?

import math
c. Must the parameter & argument be the same?

parameter
def calculateArea(radius): Function header
area = math.pi * radius *x 2
print("Area of a circle with a radius of", radius,'"is",area)

def main():Func on
radius = in%(%n

calculateAres

h 'dEenrter the radius: "))

argument

main()

ok at POGIL Activity #13 Question 1
import math) o \what does this do?

c. What are the arguments for?

def getQuadratic(a,b): d. What does the program do?
square = akxk2 + bxk2 f. None- or value- returning?
squareRoot = math.sqrt(square)
e. What does this do?
def main():

sqRoot =QetQuadratic(3,4) Function call

b. Why isn’t the function call by itself?
print("Square root of sum of square of 3 & 4 is",sqRoot)

##H##HE Call to main() #H##H#
main()

Look at POGIL Activity #13 Question 2

def getExp(a,b): a. getExp: None- or value- returning?
return axxb

def showExp(a,b): b. showExp: None- or value- returning?
print (axxb)

def main():

print(getExp(2,0)) c. What will be printed?
print(showExp(2,1))

main()

Value-Returning Functions

* Once you return inside a function, you don’t continue on!

* You leave that function!

* Suggestions: only have one return statement that is reachable
* With i f statements, can have multiple!

N

Interpreting an Algorithm

Pixel, the Sentient Snowball

Pixel, The Sentient Snowball, May 16, 2018

Month 1123|456
Adjustment | 1 (4|4 |0 |2 |5

2. Compute the sum of the following quantities:

2 e the month adjustment from the given table (e.g., 6 for Admiral Hopper)
1 6e the day of the month

e the year (since 1900) =118
20 e the whole number of times 4 divides the year (e.g., 29 for Pixel)

2+16+118+29 = 165

Pixel, The Sentient Snowball, May 16, 2018

. Compute the remainder of the sum of step 2, when divided by 7. The remainder gives the day
of the week, where Saturday is 0, Sunday is 1, etc. Notice that we can compute the remainders
before we compute the sum. You may also have to compute the remainder after the sum as
well, but if you're doing this in your head, this considerably simplifies the arithmetic.

165%7 =4
Sat. =0; Sun. =1; Mon =2, Tues = 3, Wed =4

Pixel was born on a Wednesday

DayOfWeek “Lecture 3” Hand-out

* Look at the algorithm on one side

* Can you see where it is represented in the python code on the other
side?

(There are some more advanced topics in the python code, like lists & if
statements we haven’t yet covered)

month = int(input("Month (1-12): "))
day = int(input("Day (1-31): "))
year = int(input("Year (1900-2099): ")) python3 dow.py

Recall: to ezecute this script, we can type:

o) o) We can now reuse the code in the script, without re-typing the commands.
this is a *list* containing 12 integers.

adjustments = [1,4,4, 0,2,5, 0,3,6, 1,4,6]

the integers in the adjustment list are indexed O through 11
madj i1s the adjustment based on the particular month
madj = adjustments[month-1]

it’s best to think of the year as a value between 0 and 200
year -= 1900

this i1s the main calculation:
madj + day + (year//4) + year

sSum

this 1s a correction for early in leap years
if (year’4 == 0) and (month <= 2)
sum -= 1

a *list of strings*, indexed between 0 and 6 (remainders, mod 7)

dayName = ["Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
print (dayName [sum’%7])

?UESHNS? P
‘) -

> 7

Leftover Slides

Grace Hopper, December 9 1906

2. Compute the sum of the following quantities:
6 e the month adjustment from the given table (e.g., 6 for Admiral Hopper)
O e the day of the month

e the year (since 1900) =6

e the whole number of times 4 divides the year (e.g., 29 for Pixel)

1

6+9+6+1 = 22

Grace Hopper, December 9 1906

3. Compute the remainder of the sum of step 2, when divided by 7. The remainder gives the day
of the week, where Saturday is 0, Sunday is 1, etc. Notice that we can compute the remainders
before we compute the sum. You may also have to compute the remainder after the sum as
well, but if you're doing this in your head, this considerably simplifies the arithmetic.

22%7 =1

Saturday =0
Sunday =1

Admiral Grace Murray Hopper was born on a Sunday

