
Oracle Lab:
n-grams
Introduction to Computer Science

Iris Howley

LAST LAB OF THE
SEMESTER!!!!!!!!!

(It's also extra credit!)

TODAY’S LESSON
n-grams

(Generating reasonable text by training a model on historical text)

Using multiple instances of a text-generating class to generate text for
different characters in the same book.

Oracle Demo

Hagrid: "member . i should n'ta told yeh that ! he
blurted out . i want
. yer ticket fer hogwarts he said ."
Harry: " n't talk . i tried to turn him yellow
yesterday to make him
id - he 's runnin ' back up ter the school .”
Vernon: "aid uncle vernon " so all aboard ! " where
's the cannon ?
you are boy . platform nine - platform ten ."
Quirrell: "ee the stone...i 'm presenting it to my
master...but where is
vering treble either but cold and sharp ."
Dumbledore: "dungeons between you and professor
quirrell is a complete secret
prises even me sometimes...now enough questions ."

williams
wi
il
ll
li
ia
am
ms
s_

w à i
i à l
l à l
l à i
i à a
a à m
m à s
s à _

w à i
i à la
l à l
l à i

a à m
m à s
s à _

l à li

w à i
i à la
l à li

a à m
m à s
s à _

The distribution, from our data,
of letters that can follow a given
letter sequence

We can use this to
randomly generate similar
text as the original.

A fingerprint
WHAT DOES THIS REPRESENT?

1. Randomly select a n-1 gram (on the left)
2. Let’s say we select ‘i’
3. Given i, the next letter can be

1. either ‘l’ or ‘a’ with 50% chance each

4. Let’s say we randomly pick ‘a’
5. Now, given ‘a’, what can we choose?

1. Only m!

6. And then s follows
7. s doesn’t have an entry, so what do we do?

§ We can randomly pick a new letter, now we have a new n-1 gram!
§ …start again from the top, until we decide to stop!

w à i
i à la
l à li

a à m
m à s

i

ia

iam
iams

Given more data, our output (blue)
will have more possible outcomes.

• We’ve been working with 2-grams or bigrams
• There’s also trigrams:

§ wil, ill, lli, lia, iam, ams

• Which we can turn into a distribution as follows
§ wi à l, il à l, ll à i, li à a, ia à m, am à s

• 4-grams, 20-grams, etc. etc.

• We call these “n-grams”

N-gramsw à i
i à la
l à li

a à m
m à s

wià l
il à l
ll à i
li à a
ia à m
am à s

What will we need to build our text-generating

• Choose an n for our n-gram
• Some text to build the letter distribution à file input!
• A data structure to hold the letter distribution/fingerprint
• Somewhere to start generating new text
• Something to do when we run out of letters (i.e. what comes after the

‘s’ in Williams?)
§ We’ll need to store our text

ORACLE ??

Why use classes instead of a pile of functions?

• Encapsulation! Abstraction!

• Maintaining state
• But we must write our methods to maintain that state

Why use classes instead of a pile of functions?

• Multiple oracles at the same time!

Harry Oracle Draco Oracle Hermione Oracle

ha = Oracle()
…
print(next(ha.lines()))

dr = Oracle()
…
print(next(dr.lines()))

he = Oracle()
…
print(next(he.lines()))

questions?? ?
?? ?

?

??

?
Please contact me!

Oracle Lab:
Starter Code

Introduction to Computer Science
Iris Howley

TODAY’S LESSON
Lab 10

(Generating reasonable text by training a model on historical text)

ENCAPSULATING DATA IN CLASSES
TO GENERATE

HUMAN-LIKE TEXT

Classes + Dictionaries + Generators
+ Files

Look at oracle.py

• __slots__ = ['_corpus', '_dist', '_n']
§ A special list to hold the class’ attributes
§ It restricts the attributes to just these!

• __XXXX__ are special python variables/functions
§ __name__, __all__, __slots__, many others!
§ _XXX are variables/functions we don’t want to be public
§ Won’t show up in pydoc3, etc. Just for our use in this Oracle class!

How we interact with Oracle

g = Oracle()
lines = [line.strip() for line in
open(‘tom.txt’)]

text = " ".join(lines)
g.scan(text)
for line in g.lines():
print(line)

When we create an instance of a class, that
class’s __init__() method is called

def __init__(self):
self is always passed

to class methods

• self refers to this particular object
(i.e., an object reference)

• When we see self.something, we
know it’s a variable, method, etc.
associated with a particular instance
of a class

def __init__(self):

def __init__(self, n = 4):
"""Initialize the oracle with n-gram size n."""
self._n = n
self._dist = dict()
self._corpus = ""

__init__ sets the
initial values for

attributes within the
instance of the class

def __init__(self):

def __init__(self, n = 4):
"""Initialize the oracle with n-gram

size n."""
self._n = n
self._dist = dict()
self._corpus = ""

Can be used to set
default values in case
the user doesn’t pass

an argument

Oracle Lab:
Using the Oracle

Introduction to Computer Science
Iris Howley

How we interact with Oracle

g = Oracle()
lines = [line.strip() for line in
open(‘tom.txt’)]

text = " ".join(lines)
g.scan(text)
for line in g.lines():
print(line)

What does this line imply about Oracle’s
lines() method?

for line in myoracle.lines():

• .lines() is a generator
§ yields lines instead of returning lines!

• Our .lines() function will produce a generated line of text that
will fit on a single line on the console (70-80 characters)
• But we still need a way to generate individual letters to put in the line

§ for <variable> in <sequence>
§ __iter__(self) function is called on the <sequence> object

o Review Lecture 13/14 on Iterators (and review generators, too)
§ It also yields an element from the sequence, one at a time

How we interact with Oracle

g = Oracle()
lines = [line.strip() for line in
open(‘tom.txt’)]

text = " ".join(lines)
g.scan(text)
for line in g.lines():
print(line)

When does this stop printing lines?

WHEN WE HAVE AN INFINITE

GENERATOR, HOW TO PRINT

LIMITED NUMBER OF VALUES?

Printing Limited Values from Infinite Generator

• Will count off even numbers forever:
>>> def countEveryOther():
... current = 0
... while True:
... yield current
... current +=2
• Print the values from the generator:
>>> g = countEveryOther()
>>> for num in g:
... print(num)
• Will print even numbers infinitely (too fast to read)!!

Printing Limited Values from Infinite Generator

Printing Limited Values from Infinite Generator

• Will count off even numbers forever:
>>> def countEveryOther():
... current = 0
... while True:
... yield current
... current +=2
• Print the first 10 values from the generator:
>>> g = countEveryOther()
>>> for _, num in zip(range(10), g):
... print(num)
• Built-in zip(..) function zips iterable objects together!

zip(iterable1, iterable2)

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]

>>> zipped = zip(x, y)

>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]

https://docs.python.org/3/library/functions.html#zip

Note that zip(..) produces a sequence of tuples:
(iterable1[0], iterable2[0])…

zip(iterable1, iterable2)

>>> x = (1, 2, 3, 4, 5, 6)
>>> y = {7, 8, 9}

>>> zipped = zip(x, y)

>>> list(zipped)
[(1, 8), (2, 9), (3, 7)]

https://docs.python.org/3/library/functions.html#zip

Note that zip(..) only produces these paired
tuples until one of the iterables parameters runs out

of items!

How we interact with Oracle

g = Oracle()

g.scan(text)
for _,line in zip(range(1000), g.lines()):

print(line)

This prints only the first 1000 lines of our Oracle-
generated text!

questions?? ?
?? ?

?

??

?
Please contact me!

Leftover Slides

Classes

>>> from oracle import Oracle
>>> o = Oracle()
• >>> type(o)
• <class 'oracle.Oracle'>

• o is an instance of the class, Oracle
• Classes are user-defined types

>>> from oracle import Oracle
>>> o = Oracle()
>>> o

<oracle.Oracle object at 0x103485e48>

…Define the __repr__() function in the oracle class

>>> from oracle import Oracle
>>> o = Oracle()
>>> o

REPR(): Oracle(n=4)

Classes

Selecting an item from a sequence

Shannon Entropy

• Average rate at which information is produced by our data
§ The unexpectedness of a sequence of characters we select

• The entropy of a random variable is calculated with this formula:
1. Where pi is the probability of seeing a given n-gram in our data
2. Given a set of n observations

§ Where each observation is a different sequence of characters observed in our
data

3. Compute pi for the range all observations multiply by log2(pi)
4. Sum across all values

__slots__ = []

Why do these differ?

>>> Class Years:
""" Define some attributes """

>>> y = Years()
>>> y

<__main__.Years object at 0x108c63860>
>>> from oracle import Oracle
>>> o = Oracle()
>>> o

<oracle.Oracle object at 0x103485e48>

Classes

This is __name__!!!!

