W

\\

Vo~ o~
)/\ (@
P
8o
?®

>

Oracle Lab:
n-grams

Introduction to Computer Science

Iris Howley

\ 4

|_ g
MLAST LAB OF THId
'SEMESTER""""'

edit!)

TODAY'S LESSON

n-grams

(Generating reasonable text by training a model on historical text)

Oracle Demo

Using multiple instances of a text-generating class to generate text for
different characters in the same book.

Hagrid: "member . 1 should n'ta told yeh that ! he
blurted out . i1 want

. yer ticket fer hogwarts he said .

Harry: " n't talk . 1 tried to turn him yellow
yesterday to make him

id - he 's runnin back up ter the school .”

|

|

|

|

|

|

|

|
Vernon: "aid uncle vernon so all aboard ! " where i
's the cannon ? |
|

|

|

|

|

|

|

|

|

you are boy . platform nine - platform ten .

Quirrell: "ee the stone...i1i 'm presenting it to my
master...but where 1is

vering treble either but cold and sharp

Dumbledore: "dungeons between you and professor
quirrell 1s a complete secret

prises even me sometimes...now enough questions .

williams

Wi W= i W = | W = |
il i = | i =2 la i =2 la
| 2 | 2 i

| -2 | |

i > >

ia >i%a > >

am a>m a=—2>m a—>m
ms m-=s m-=>s m-—> s

S s = S = S>>

WHAT DOES THIS REPRESENT?

A fingerprint
The distribution, from our data, g

of letters that can follow a given
letter sequence

We can use this to

randomly generate similar
text as the original.

Randomly select a n-1 gram (on the left)

Let’s say we select ‘I’

i =2 1a 3. Given i, the next letter can be
| % . either ‘I’ or ‘@’ with 50% chance each

4. Let’s say we randomly pick ‘@’
5. Now, given ‘a’, what can we choose?
Only m!
2-m 6. And then s follows

m-=>5s

7. s doesn’t have an entry, so what do we do?
We can randomly pick a new letter, now we have a new n-1 gram!
...start again from the top, until we decide to stop!

N-grams

* We’ve been working with 2-grams or bigrams

| 2 | * There’s also trigrams:
wil, ill, Ili, lia, iam, ams

 Which we can turn into a distribution as follows
wi2Lil=2LIl=2ili2aia=>m am—=>s

a—>m - 4-grams, 20-grams, etc. etc.

m-=>5s

* We call these “n-grams”

What will we need to build our text-generating
?7?

* Choose an n for our n-gram

* Some text to build the letter distribution =2 file input!

* A data structure to hold the letter distribution/fingerprint
* Somewhere to start generating new text

* Something to do when we run out of letters (i.e. what comes after the
‘s’ in Williams?)
We’ll need to store our text

Why use classes instead of a pile of functions?

* Encapsulation! Abstraction!

* Maintaining state
* But we must write our methods to maintain that state

Why use classes instead of a pile of functions?

* Multiple oracles at the same time!

Harry Oracle Draco Oracle

ha = Oracle() dr Oracle() he

;rint(next(ha. lines())print(next(dr.lines()))print (next(

?
P @UILE\SHLIMS

Oracle Lab:
Starter Code

()
\ (0 0)
/ = @@ Introduction to Computer Science

\ \ / Iris Howley
W\ W

AA

TODAY'S LESSON

Lab 10

(Generating reasonable text by training a model on historical text)

ENCAPSULATING DATA IN CLASSES
TO GENERATE
HUMAN-LIKE TEXT

Classes + Dictionaries + Generators
+ Files

Look at oracle.py

* slots = |
A special list to hold the class’ attributes
It restricts the attributes to just these!

_corpus', ' dist’', ' n']

* XXXX__ are special python variables/functions
__name_ , all , slots , many others!

_XXX are variables/functions we don’t want to be public
Won’t show up in pydoc3, etc. Just for our use in this Oracle class!

How we interact with Oracle

g = Oracle()
When we create an instance of a class, that
class’s init () method is called

self isalways passed
to class methods

 self refers to this particular object
(i.e., an object reference)

* When we see self.something, we
know it’s a variable, method, etc.
associated with a particular instance
of a class

def 1nit (self):

def 1nit (self, n = 4):

"""Initialize the oracle with n-gram size n.""?
self. n =n - init setsthe
self. dist = dict() initial values for

1£. = - ithi
self. corpus attributes within the

instance of the class

def 1nit (self):

def _ init (self, n = 4):

"""TInitialize the oracle with n-gram
Can be used to set
self. n = n

| | default values in case
self. dist = dict() ,
. the user doesn’t pass
an argument

size n.

self. corpus =

Oracle Lab:
Using the Oracle

()
\ (0 0)
/ = @@ Introduction to Computer Science

\ \ / Iris Howley
W\ W

AA

How we interact with Oracle

g = Oracle()

g.scan(text)
for line in g.lines():
print(line)
What does this line imply about Oracle’s
lines () method?

line myoracle.lines():

° .lines () isagenerator
vields lines instead of returning lines!

* Our .1ines () function will produce a generated line of text that
will fit on a single line on the console (70-80 characters)

* But we still need a way to generate individual letters to put in the line
for <variable> 1in <sequence>

__iter (self) function is called on the <sequence> object
Review Lecture 13/14 on Iterators (and review generators, too)

It also yields an element from the sequence, one at a time

How we interact with Oracle

= Oracle()

g.scan(text)
line g.lines():
(line)

WHEN WE HAVE AN INFINITE

GENERATOR, HOW TO PRINT
LIMITED NUMBER OF VALUES?

\&

Printing Limited Values from Infinite Generator

* Will count off even numbers forever:
>>> def countEveryOther () :
current = 0
while True:
yleld current
- current +=2
* Print the values from the generator:
>>> g = countEveryOther ()
>>> for num 1n g:
print (num)
* Will print even numbers infinitely (too fast to read)!!

2004612
2004614
2004616

. . . 2004618

Printing Lim2eesczo ‘e Generator
2004622
2004624
2004626
2004628
2004630
2004632
2004634
2004636
2004638
2004640
2004642
2004644
2004646
2004648
2004650
2004652
2004654
20046567 C2004658
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt

Printing Limited Values from Infinite Generator

* Will count off even numbers forever:
>>> def countEveryOther () :

current = 0

while True:

yleld current

“ .. current +=2
* Print the first 10 values from the generator:
>>> g = countEveryOther ()
>>> for , num 1n zip(range (10), g):

print (num)
* Built-in zip (. .) function zips iterable objects together!

zip (1terablel, iterable2)

>>> = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)
>>> 1list (zipped)

[(1, 4), (2, 5), (3, ©6)]

Note that zip (. .) produces a sequence of tuples:
(Lterablel [0], 1terable’2[0])..

https://docs.python.org/3/library/functions.html#zip

zip (1terablel, iterable2)

>>> x = (1, 2, 3, 4, 5, 0)
>>> vy = {7, 8, 9}

>>> zipped = zip(x, V)

>>> 1list (z1lpped)

[(1, 8), (2, 9), (3, 7)]

Note that zip (. .) only produces these paired

tuples until one of the iterables parameters runs out
of items!

https://docs.python.org/3/library/functions.html#zip

How we interact with Oracle

g = Oracle()

g.scan(text)
for ,line in zip(range(1000), g.lines()):
print(line)
This prints only the first 1000 lines of our Oracle-
generated text!

?
P @UILE\SHLIMS

Leftover Slides

Classes

>>> from oracle i1mport Oracle
>>> o0 = Oracle()

* >>> type (o)

*<class 'oracle.Oracle'>

* 0 is an instance of the class, Oracle
* Classes are user-defined types

>>> from oracle import Oracle

>>> o = Oracle()

>>> 0
<oracle.Oracle object at 0x103485e48>

..Define the __repr__ () function in the oracle class

>>> from oracle import Oracle

>>> o = Oracle()

>>> 0
REPR(): Oracle(n=4)

Selecting an item from a sequence

>>> from random import choice

>>> 1 =['a','b','c','d"'] >>> s = "The mountains!"é
>>> print(choice(l)) >>> print(choice(s)) |
S>> print(choice(1l)) I>> print(choice(s))
S>> print(choice(1l)) i>> print(choice(s))
2>> print(choice(1l)) :>> print(choice(s))
:>> print(choice(1l)) 2>> print(choice(s))

N—1
Shannon Entropy H=— Z pilog; pi
1=0

* Average rate at which information is produced by our data
The unexpectedness of a sequence of characters we select

* The entropy of a random variable is calculated with this formula:
1. Where p;, is the probability of seeing a given n-gram in our data

2. Given a set of n observations

Where each observation is a different sequence of characters observed in our
data

3. Compute p, for the range all observations multiply by log2(p))
4. Sum across all values

slots

|
~
ed

>>> class Yesteryears:
| tnr demo of classes from last week """

>>> yy = Yesteryears()
>>> yy.start = 2018
>>> yy.end = 2022

>>> yy.mid = 2020

>>> yy.whatev = "I do what I want!"

class Years:

__slots__ = ['start',6 'end']

>>> newy.start = 2017

>>> newy.end = 2021

>>> newy.mid = 2019

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'Years' object has no attribute 'mid'

[
[
[
>>> newy = Years()
[
[
[

Why do these differ?

>>> (Class Years:
""" Define some attributes

>>> y = Years|()
>>> vy
< main .Years object at 0x108c63860>
>>> from oracle import Oracle
>>> o = Oracle() Thisis name Il
>>> 0
<oracle.Oracle object at 0x103485e48>

