1. In the following table, the value alice is used to produce the value of bob using an assignment making use of indexing. Fill in the blanks.

<table>
<thead>
<tr>
<th>value of alice</th>
<th>value of bob</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. "Hello, world"</td>
<td>"Hello"</td>
<td>bob = alice[0:5]</td>
</tr>
<tr>
<td>a. "Pixel"</td>
<td>"P"</td>
<td>bob =</td>
</tr>
<tr>
<td>b. "February"</td>
<td>"bru"</td>
<td>bob =</td>
</tr>
<tr>
<td>c. "Ephraim"</td>
<td></td>
<td>bob = alice[-3:]</td>
</tr>
<tr>
<td>d. "grace hopper"</td>
<td></td>
<td>bob = alice[6:30]</td>
</tr>
<tr>
<td>e. "ornation"</td>
<td>"onto"</td>
<td>bob =</td>
</tr>
<tr>
<td>g. "desserts"</td>
<td>"stressed"</td>
<td>bob =</td>
</tr>
<tr>
<td>h. "blueness"</td>
<td>"snub"</td>
<td>bob =</td>
</tr>
<tr>
<td>i. "tapia"</td>
<td></td>
<td>bob = alice[:3]+alice[3:]</td>
</tr>
</tbody>
</table>

For the next few questions, we will think about the implications of working with mutable and immutable objects in Python. Beside each # prints:, indicate what is printed.

2a. hopper = [20, 21, 22] # some upcoming years
tapia = [20, 21, 22] # some classes of students
print(hopper is tapia) # prints:
hopper.append(23) ###
print(hopper) # prints:
print(tapia) # prints:

Explain what is happening to hopper and tapia (if anything) on the statement marked ###.
2b. hopper = tapia = [23, 20, 21, 22] # some upcoming graduating years
print(hopper is tapia) # prints:
 sorted(hopper) ###
print(hopper) # prints:
print(tapia) # prints:
tapia.sort() ###
print(hopper) # prints:
print(tapia) # prints:

Explain what is happening on the statements marked ###.

2c. hopper = tapia = 'upcoming years'
print(hopper is tapia) # prints:
tapia.replace('upcoming', 'graduating') ###
print(tapia) # prints:
print(hopper) # prints:
hopper = hopper.replace('upcoming','pre-alumni') ###
print(hopper) # prints:
print(tapia) # prints:

Explain what is happening on the statements marked ###.

2d. nestedList = [[1, 2], [3, 4]] # list of lists
nestedList.append(nestedList[1]) ###
nestedList[2][1] = 6 ###
print(nestedList) # prints:

Explain what is happening on the statements marked ###.

*